Brain Genomics:
Using population-scale functional genomics to suggest potential drug
targets for neuropsychiatic disease & building a hybrid classifier to
predict the differential sensitivity of individuals to drugs
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Many big projects.
Soon millions will be sequenced....

The 100,000 Genomes Project in numbers
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What to do with these ° Personalized risk prediction

variants in relation to for many conditions
disease * Precision oncology
ORI * Drug target identification
IN CANCER TREATMENT via genetic associations
e « Accounting for differential

drug sensitivity

Genetic Variants Associated
with Disease Risk
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Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs

 PsychENCODE: Population-level analysis of

functional genomics data related to
neuropsychiatric disease

Construction of an adult brain resource with 1866
individuals + full developmental time-course

Using the changing proportions of cell types (via
single-cell deconvolution) to account for
expression variation across a population,
disorders & development

Large-scale processing defines ~79K PFC
enhancers & creates a comprehensive QTL
resource (~2.5M eQTLs + cQTLs & fQTLSs)

Connecting the QTLs, enhancer activity relationships
& Hi-C contacts into a brain regulatory network &
using this to link SCZ GWAS SNPs to genes

Embedding the reg. network in a

deep-learning model to predict psychiatric disease
from genotype & transcriptome. Using this to suggest
specific pathways & genes, as potential drug targets.

Other resource uses: highlighting aging related genes
+ consistently comparing the brain to other organs

« GenoDock: Building a predictor
for the sensitivity of drug binding
to personal SNVs

- Hybrid classifier connecting
physical modelling with
statistical learning

 The modeling creates a

pseudo gold-standard
dataset, which is used to
train the stat. classifier

- Classifier Results
* Independent validation

on an expt. validation set

Gives higher disruption
scores to cancer driver
SNVs. Also, illustrates

importance of different
features (eg GERP).

Picks out certain drugs (eg
imatinib) as being particularly
sensitive to SNVs



Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs

* PsychENCODE: Population-level analysis of * GenoDock: Building a predictor
functional genomics data related to for the sensitivity of drug binding
neuropsychiatric disease to personal SNVs

— Construction of an adult brain resource with 1866 - Hybrid classifier connecting
individuals + full developmental time-course physical modelling with

— Using the changing proportions of cell types (via statistical learning
single-cell deconvolution) to account for « The modeling creates a
expression variation across a population, pseudo gold-standard
disorders & development dataset, which is used to

- Large-scale processing defines ~79K PFC train the stat. classifier
enhancers & creates a comprehensive QTL - Classifier Results
resource (~2.5M eQTLs + cQTLs & fQTLs) * Independent validation

— Connecting the QTLs, enhancer activity relationships on an expt. validation set
& Hi-C contacts into a brain regulatory network & * Gives higher disruption
using this to link SCZ GWAS SNPs to genes scores to cancer driver

. . SNVs. Also, illustrates

- Embeddlng_the reg. network In a . importance of different

deep-learning model to predict psychiatric disease features (eg GERP).

from genotype & transcriptome. Using this to suggest | Picks out certain drugs (e
specific pathways & genes, as potential drug targets. imatinib) as being pagrticulgrly

Other resource uses: highlighting aging related genes sensitive to SNVs
+ consistently comparing the brain to other organs



Sample Sources: >2,500 brains
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’18 rollout in Science

11 papers in total.
Major material in the 3 capstones:

Wang et al. (‘18), Li et al. (‘18), Gandal et al. ('18)
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A core issue addressed by PsychENCODE:

Using functional genomics to reveal molecular mechanisms

between genotype and phenotype in brain disorders

Disease Heritability™ Molecular Mechanisms

Schizophrenia 81% (C4A)

Bipolar disorder 70%

Alzheimer's disease | 58 - 79% Apolipoprotein E (APOE), Tau
30% Renin—angiotensin—aldosterone
34-53% Atherosclerosis, VCAM-1

Stroke 32% Reactive oxygen species (ROS),

Ischemia

Type-2 diabetes 26% Insulin resistance

25-56% BRCA, PTEN

Many psychiatric conditions are highly heritable

Schizophrenia: up to 80%

W pathways,
circuits
Cell types Mot Sad
Regulatory
elements Genes

Genotype

But we don’t understand basic molecular mechanisms underpinning this association
(in contrast to many other diseases such as cancer & heart disease)
Thus, interested in developing predictive models of psychiatric traits which:

Use observations at intermediate (molecular levels) levels to inform latent structure
Use the predictive features of these “molecular endo phenotypes” to begin to suggest

actors involved in mechanism

*https://www.snpedia.com/index.php/Heritability



*https://www.snpedia.com/index.php/Heritability

A core issue addressed by PsychENCODE:
Using functional genomics to reveal molecular
mechanisms between genotype and phenotype in
brain disorders
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Developmental Capstone Data Set
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* 60 Individuals in total
« Ages from 5 PCW to 64 yrs.

* 16 brain regions for > 9 PCW
[Li et al. (“18) Science]
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[Wang et al. (‘18) Science]



Merging & Clustering Single Cell Data Sets
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[Li et al. (“18), Science. Wang et al. (‘18). Science]
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24 selected cell types
(Neuronal, NonNeuronal, Developmental)
1866 individuals

. o 1866 individuals
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o

Individual and cross-population
reconstruction accuracy via
deconvolution

[Wang et al. (‘18) Science]

13 = Lectures.GersteinLab.org



Identifying NMF components representing hidden features of
bulk gene expression data
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[Wang et al. (‘18) Science]
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Different neuronal & glial cell
fractions across disorders
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Cell fractions

Excitatory to Inhibitory imbalance at
neuronal subtype level for ASD*

* Rubenstein et al., Model of autism: increased ratio of excitation/inhibition in key neural systems, Genes Brain
Behav. 2003

[Wang et al. (‘18) Science]
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Different neuronal & glial cell

fractions across ages
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Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs

* PsychENCODE: Population-level analysis of * GenoDock: Building a predictor
functional genomics data related to for the sensitivity of drug binding
neuropsychiatric disease to personal SNVs

— Construction of an adult brain resource with 1866 - Hybrid classifier connecting
individuals + full developmental time-course physical modelling with

— Using the changing proportions of cell types (via statistical learning
single-cell deconvolution) to account for « The modeling creates a
expression variation across a population, pseudo gold-standard
disorders & development dataset, which is used to

- Large-scale processing defines ~79K PFC train the stat. classifier
enhancers & creates a comprehensive QTL - Classifier Results
resource (~2.5M eQTLs + cQTLs & fQTLs) * Independent validation

— Connecting the QTLs, enhancer activity relationships on an expt. validation set
& Hi-C contacts into a brain regulatory network & * Gives higher disruption
using this to link SCZ GWAS SNPs to genes scores to cancer driver

. . SNVs. Also, illustrates

- Embeddlng_the reg. network In a . importance of different

deep-learning model to predict psychiatric disease features (eg GERP).

from genotype & transcriptome. Using this to suggest | Picks out certain drugs (e
specific pathways & genes, as potential drug targets. imatinib) as being pagrticulgrly

Other resource uses: highlighting aging related genes sensitive to SNVs
+ consistently comparing the brain to other organs



Reference Brain

Developing a Reference Set of ~79K PFC Enhancers
& Studying Their Population Variation

Chr1 15,265 kb 15,270 kb 15,275 kb 15,280 kb
1 1 1 1 1 1 )

Enhancers - -

ATAC-seq st iemen i DS bn o st d o
H3K4me3

e P TP ™ vV - -
Peaks track e aeeaaa———]

Consistent with ENCODE, active
enhancers are identified as open

chromatin regions enriched in
H3K27ac and depleted in H3K4me3

We identified 79056 enhancers

in the reference Brain

[Wang et al. (‘18) Science]
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Reference Brain

Cohort H3K27ac peaks

Developing a Reference Set of ~79K PFC Enhancers
& Studying Their Population Variation
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[Wang et al. (‘18) Science]

from cohort
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Sun, Wei, and Yijuan Hu. "eQTL mapping using RNA-seq data." Statistics in biosciences 5.1

(2013): 198-219.

Quantitaive Trait Loci (QTLs) associated with variation

Total Read Count

Gene expression (eQTL)

Sample 1: genotype CC

Sample 2: genotype CG

140 160 180 200 220

Chromatin (cQTL)

s G AMK 2N

: - @ -
B NEPSSRY NV YT

rs112660177

Numbers eGenes
of Enhancers SNPs
QTLs Cell types

eQTL 2,542,908 32,944 1,341,182
cQTL* 8,464 8,484 7,983

[Wang et al. (‘18) Science]
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Cell fraction QTLs (fQTLs)
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Number of eGenes

Larger brain eQTL sets than previous studies,
but strong overlap with them
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[Wang et al. (‘18) Science]
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eQTL

Numbers eGenes
of Enhancers
QTLs Cell types
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[Wang et al. (‘18) Science]

23 ™ Lectures.Gersteinl



Brain eQTLs and enhancers enriched with GWAS

SNPs for brain disorders

eQTL

el L

75 50 25 0
-log10 FDR

Wang, et al., Science, 2018
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Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs

* PsychENCODE: Population-level analysis of * GenoDock: Building a predictor
functional genomics data related to for the sensitivity of drug binding
neuropsychiatric disease to personal SNVs

— Construction of an adult brain resource with 1866 - Hybrid classifier connecting
individuals + full developmental time-course physical modelling with

— Using the changing proportions of cell types (via statistical learning
single-cell deconvolution) to account for « The modeling creates a
expression variation across a population, pseudo gold-standard
disorders & development dataset, which is used to

- Large-scale processing defines ~79K PFC train the stat. classifier
enhancers & creates a comprehensive QTL - Classifier Results
resource (~2.5M eQTLs + cQTLs & fQTLs) * Independent validation

— Connecting the QTLs, enhancer activity relationships on an expt. validation set
& Hi-C contacts into a brain regulatory network & * Gives higher disruption
using this to link SCZ GWAS SNPs to genes scores to cancer driver

. . SNVs. Also, illustrates

- Embeddlng_the reg. network In a . importance of different

deep-learning model to predict psychiatric disease features (eg GERP).

from genotype & transcriptome. Using this to suggest | Picks out certain drugs (e
specific pathways & genes, as potential drug targets. imatinib) as being pagrticulgrly

Other resource uses: highlighting aging related genes sensitive to SNVs
+ consistently comparing the brain to other organs
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[Wang et al. (‘18) Science]
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Imputed gene regulatory network for
the human brain
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[Wang et al. (‘18) Science]
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GWAS variants and single cell expression levels for

SCZ genes
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Wang, et al., Science, 2018
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Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs

* PsychENCODE: Population-level analysis of * GenoDock: Building a predictor
functional genomics data related to for the sensitivity of drug binding
neuropsychiatric disease to personal SNVs

— Construction of an adult brain resource with 1866 - Hybrid classifier connecting
individuals + full developmental time-course physical modelling with

— Using the changing proportions of cell types (via statistical learning
single-cell deconvolution) to account for « The modeling creates a
expression variation across a population, pseudo gold-standard
disorders & development dataset, which is used to

- Large-scale processing defines ~79K PFC train the stat. classifier
enhancers & creates a comprehensive QTL - Classifier Results
resource (~2.5M eQTLs + cQTLs & fQTLs) * Independent validation

— Connecting the QTLs, enhancer activity relationships on an expt. validation set
& Hi-C contacts into a brain regulatory network & * Gives higher disruption
using this to link SCZ GWAS SNPs to genes scores to cancer driver

. . SNVs. Also, illustrates

- Embeddlng_the reg. network In a . importance of different

deep-learning model to predict psychiatric disease features (eg GERP).

from genotype & transcriptome. Using this to suggest | Picks out certain drugs (e
specific pathways & genes, as potential drug targets. imatinib) as being pagrticulgrly

Other resource uses: highlighting aging related genes sensitive to SNVs
+ consistently comparing the brain to other organs



Deep Structured Phenotype Network
(DSPN)

Boltzmann machine

s ® 3 |@®e™ y: phenotypes
ene 7 -
regulatory ‘ e P12 hidden units (e.g., circuits)
network —
. XX IBCX X : intermediate phenotypes
:::I(:fon see see S (e.g., genes, enhancers)
el zigenotypes (e.g., SNPs)

Energy
model: W: weights

S e.g., regulatory network
p(x' y, hlZ) & exp(_E(X’ y hlZ)) [ o reguator;} ( g g ry )

E(x,v,h|z) = —zTWyx —xT Wy x — xTW3h — hTW,h — hTWsy — Bias
|

[Wang et al. (‘18) Science] (‘;"



LR cRBM DSPN

L3
(output)
DSPN improves brain ”
n - - (hidden)
disease prediction by
adding deep layers .
(visible or
imputed) : b § L1a/b
Lo
(conditioning)
Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full
Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%
Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%
Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

X 6.0
Accuracy = chance to correctly predict disease/health

[Wang et al. (‘18) Science]
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LR cRBM DSPN

L3
(output)
DSPN improves brain ”
n - - (hidden)
disease prediction by
adding deep layers .
(visible or
imputed) : b § L1a/b
Lo
(conditioning)
Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full
Schizophrenia 54 .6% 63.0% 70.0% 59.0% 73.6%
Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%
Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

X25
Accuracy = chance to correctly predict disease/health

[Wang et al. (‘18) Science]
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LR cRBM DSPN

L3
(output)
DSPN improves brain ”
n - - (hidden)
disease prediction by
adding deep layers .
(visible or
imputed) : b § L1a/b
Lo
(conditioning)
Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full
Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%
Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%
Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%
[ | J
T
X3.1

Accuracy = chance to correctly predict disease/health

[Wang et al. (‘18) Science]
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DSPN as non-linear Polygenic Risk Score
& relation to missing heritability

Method LR-genotype (PRS) DSPN-impute DSPN-full
Schizophrenia (SCZ) 54.6% / 0.5% 59.0% /1.8% 73.6% / 32.8%
Bipolar Disorder 56.7% 1 2.5% 67.2%/10.7% 76.7% / 37.4%
Autism Spectrum Disorder 50.0% / 0% 62.5% /3.2% 68.3% / 11.3%

accuracy / variance explained (liability)

« We convert DSPN predictions to estimates of variance explained on
liability scale (Falconer & Mackay * 96)

* Previous methods estimate 25% heritability explained by common
SNPs in SCZ => upper-bound on additive PRS

« Explaining DSPN performance: the model incorporates epistatic
interactions implicitly through reg. network structure & deep-learning
(DSPN-impute) + possible environmental effects/feedback (DSPN-full)

* Possible ‘missing heritability’ from family study estimates (SCZ, 80%);
may be overestimate due to extensive epistasis (Zuk et al., '12) :

[Wang et al. (“18) Science] a



Multilevel Network Interpretation

L3
Weight ranks
> O OO -
————— +

Best positive paths
(from a and b):
-1 o« 1 « -
a—a;— a,— SCZ
1 - 1 .

1
b_b1 _b2_ SCZ

Actual network size:
5024/400/100/1 nodes

L1d

« Sparsify network using edges with largest absolute weights (+/-)

 Extract ‘best positive paths’ through network (e.g. a-a,-a,-SCZ) by
summing weights and multiplying signs

 Extract associated HOGs (e.g. purple) & prioritized modules (grey)

[Wang et al. (‘18) Science]
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DSPN discovers enriched pathways
and linkages to genetic variation

Cross-disorder MOD/HOG
enrichment ranking

Ranking score

Functional categories

SCzZ BPD

ASD

50

(*) RNA proc. (=)
100 >200 (>) Synaptic (#)

Immune
Metabolic

Spliceosome / RNA splicing
Synaptic vesicle cycle

Antigen proc. and presentation
Vesicle localization
Proteasome

mRNA processing

Chromatin modification
Oxidative phosphorylation
Retrograde endocannabinoid sig.
Chemical synaptic transmission
Peptidyl-lysine modification
Endocytosis

Ubiquitin mediated proteolysis
Anterograde trans-synaptic sig.
mRNA transport
Phosphatidylinositol signaling
Hippo signaling pathway
Staph./ Epstein-Barr virus inf.
Synaptic signaling

Autophagy
Dop./GABA/Glutamatergic synapse
Calcium signaling

Endocrine calcium reabsorption
RNA degradation / transport
Ribosome

Neuron projection morphogenesis
Fc receptor signaling pathway
cGMP-PKG signaling pathway
mTOR signaling pathway
Cytokine-cytokine receptor int.

L3 @ BPD,

ASD, AGE;

L2

Gap junction

(>)-Synaptic vesicle cycle
>).Glutamatergic synapse
Ex1l, Ex4, Ex6 neurons

Ex6 neurons
Astrocytes

Mineral absorption
Calcium signaling

(~) Complement
cascade

Cell Fractions

Co-expr. mods.
@ L1d

L1

EH37E0947082 |

: Enhancers

Genes

OO :

/

LO
2 SNPs

SNPs | GRINIL

/ / CLU
C4B

C4A
1 sNp //@ Q

BPD

{(>) Synaptic vesicle cycle
(>) Glutamatergic synapse
Ex4 neurons

ASD

(~) Antigen processing

(=) Cytokine cytokine
receptor interaction
Astrocytes, Microglia)

~.

A

8 SNPs v@

HOMER1

NFkB2
13 SNPs
RELA

[Wang et al. (‘18) Science]
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Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs

* PsychENCODE: Population-level analysis of * GenoDock: Building a predictor
functional genomics data related to for the sensitivity of drug binding
neuropsychiatric disease to personal SNVs

— Construction of an adult brain resource with 1866 - Hybrid classifier connecting
individuals + full developmental time-course physical modelling with

— Using the changing proportions of cell types (via statistical learning
single-cell deconvolution) to account for « The modeling creates a
expression variation across a population, pseudo gold-standard
disorders & development dataset, which is used to

- Large-scale processing defines ~79K PFC train the stat. classifier
enhancers & creates a comprehensive QTL - Classifier Results
resource (~2.5M eQTLs + cQTLs & fQTLs) * Independent validation

— Connecting the QTLs, enhancer activity relationships on an expt. validation set
& Hi-C contacts into a brain regulatory network & * Gives higher disruption
using this to link SCZ GWAS SNPs to genes scores to cancer driver

. . SNVs. Also, illustrates

- Embeddlng_the reg. network In a . importance of different

deep-learning model to predict psychiatric disease features (eg GERP).

from genotype & transcriptome. Using this to suggest | Picks out certain drugs (e
specific pathways & genes, as potential drug targets. imatinib) as being pagrticulgrly

Other resource uses: highlighting aging related genes sensitive to SNVs
+ consistently comparing the brain to other organs



Phase 1 PsychENCODE capstone resource:
Layers of distributed information

Material in the 3 capstones:

AC - Wang et al. ("18)
DC - Li et al. ("18)
NC - Gandal et al. ('18)

39
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Cross tissue
variation in
Chromatin &
Expression

Placing the
Brain

in context of all other

Body Tissues

Transcriptome diversity increases in
the non-coding portion of the brain genome
while decreases in Other tissues

-i
o

o
2

/

o
o
[0

4

Total extent of transcription across
the cohort of individuals
~ g
&
~

-1.0
-1.0 0.0 1.0

» Reference Brain
[l PsychENCODE Brains
Ext Brains
M Cortex
Cerebellum
Other tissues
Lung
¥ Skin
M Testis

&Non-coding
Coding

Average extent of transcription in an individual

Pearson’s r

°o o oo
D N 0O ©

0.2 =
¥ e
6 c
Q , =
I IR ]
I Qo ool o X =
R XTI o
-0.1 e
§:0 o
-0.2
-0.5 -0.25 0 0.25 0.5
PCA1
c
IQ
® : s
;)
Q
| .
o
>
L
-2 -1 0 1 2

PCA1 [Wang et al. (‘18) Science]
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NRGN has variable expression over age
and is in Synaptic vesicle cycle pathway
is enriched in SCZ, BPD, ASD

NGRN is a gene
associated with
the Synaptic
vesicle pathway
and NGRN
expression and
IS
correlated with

®@

SCZ

O

pathway

Longevity regulating

(>) Synaptic vesicle cycle

EH37E0245781

1 SNP

NRGé(::

0.15

0.1

NRGN

¥ 3=

60

uoJnapN £x3

I

80

NRGN

"dx3

0
20

40

60

80
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Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs

* PsychENCODE: Population-level analysis of * GenoDock: Building a predictor
functional genomics data related to for the sensitivity of drug binding
neuropsychiatric disease to personal SNVs

— Construction of an adult brain resource with 1866 - Hybrid classifier connecting
individuals + full developmental time-course physical modelling with

— Using the changing proportions of cell types (via statistical learning
single-cell deconvolution) to account for « The modeling creates a
expression variation across a population, pseudo gold-standard
disorders & development dataset, which is used to

- Large-scale processing defines ~79K PFC train the stat. classifier
enhancers & creates a comprehensive QTL - Classifier Results
resource (~2.5M eQTLs + cQTLs & fQTLs) * Independent validation

— Connecting the QTLs, enhancer activity relationships on an expt. validation set
& Hi-C contacts into a brain regulatory network & * Gives higher disruption
using this to link SCZ GWAS SNPs to genes scores to cancer driver

. . SNVs. Also, illustrates

- Embeddlng_the reg. network In a . importance of different

deep-learning model to predict psychiatric disease features (eg GERP).

from genotype & transcriptome. Using this to suggest | Picks out certain drugs (e
specific pathways & genes, as potential drug targets. imatinib) as being pagrticulgrly

Other resource uses: highlighting aging related genes sensitive to SNVs
+ consistently comparing the brain to other organs



An Example of Binding Affinity Change between Protein
& Drug Ligand under the Impact of Single Nucleotide

Variants (SNV)
\ ( Epidermal growth factor receptor F°': protein-fjrug binding upon
w (EGFR) tyrosine kinase inhibitors point mutation,
- - (EGFR-TKIs) are used in the
IRE treatments of non-small cell lung if ABA<O if ABA >0
cancer (NSCLC)

_ non-disruptive disruptive
WT Gefitinib (IRE) belongs to EGFR-TKI SNV (ND) SNV (D)

\ /\ / * |RE - resistant effect with somatic
A K @

mutation T790M (rs55181378)

—--------~

* Increased side-chain volume from T to

“

IRE Is there any method that }
M causes steric hinderance that I could predict the effects
disrupts the binding I of SNVs to drug binding :

I (DorND)?
MUT *  Well-studies by ligand binding assay \ !

human EGFR & gefitinib (IRE)
PDB: 2ity, Chain A, amino acid 790
Modeling and Visualization: Modeller & PyMol

Wang et al. Structure, 2019 Lectures.gersteinlab.org 43



Immense Growth of Both Genetic Variation & 3D Protein Structure Dataset:
Driving Various of SNV Annotation Tools on the Market

@ Personalized medicine has been taking the benefits from the advent of NGS

Many variant annotation tools
techniques with booming in genome variation data in the whole-genome level.

available on the market

VAT MUEPFE e s
10k SSDDMdéz“ PPTDB IS/Mutatlo%%;gzgor
o m<E GJ MutPredSplice v
gNsUaeWLI_I -I—’PO lyphenEGAD valez
genome 3 = 1ni
X L P CﬁD mg o SNPinfo/FuncPred %;
pro,ect :é EQJEQO |—§;§ szUtant LIJ«?(»E;%E
95> 007 CmSIFTA GVGD §MTE38 £
& D_&CE<D_ O§ nsSNPAnalyzerE ag»gf
52 5 555 IZAGGRESCANm e S <&
Oswis: OrEae . FoldX (36 ”
O-*%ed S22 MaxEnt e
o o “’Z A e MAPP PASTA2 AvtoMute
@ Theinterpretations of non-synonymous coding SNV is significant due to their

DBD-Hunter

implications towards human health and disease.

-------------\

I No tool specifically address impacts of

One focus under this topic is implications of SNVs onto protein drug binding I SNVs on protein-ligand binding.
activities, which is significant for drug design. However, such SNV impacts is |
hard to validate experimentally.

L

| P ————
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Assessment of feasibility to build a supervised-learning classifier
for binding-disruptive SNVs

DATA

ALGORITHM

GAP and SOLUTION

F-------------------------

i i
i SNV: @ Structure: @ Drug: @ :
i (co-crystal)
| EXAC&TCGA PubChem i
1 RCSB PDB Compound |
Though limited SNVs could be mapped onto PDBs, this data pool keeps growing. I
I----------------------- e il
I'------------------------ -I
| |
| |
| |
i availability of well-established machine learning classification algorithms |
'=:=======================:I
I
“real” gold-standard of ABA
| LBA records of ABA for a SNV- & [
I protein-drug sample upon point © * Ligand binding assay data I
I mutation is highly scant +  Too few for model training ||
i I
d Id-standard of ABA I
I Physical calculations to get the pseudo gold-standard o I
[ ABA for each sample to fill the © * Ligand-binding model I
| gap, making it possible for * Value for each sample I
I further statistical modelling I
'--------------------------

Wang et al. Structure, 2019

Goal of the study

= ="

I develop a rapid and efficient method I
I that would prioritize disruptive SNVs I
I towards drug-target binding I

What we may know

F-------------l

: 1. Plausible biophysical rationales. f
I

: 2. Efficacy of a given drug on I
individuals carrying certain SNVs. 0

' |
I--------------
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A Hot Topic in Machine Learning is “Hybrid” Model
Integrating Physical & Statistical Calculations

amount

The Major Hurdle:
Highly Scant Ligand Binding Assay Data for ABA

Number of sequenced
exonic SNVs

SNVs mapped with
human PDB (>2.84)

(Kumar et al., 2016)

~10K
SNV-struc.-drug

2015

time

2019

Wang et al. Structure, 2019

~0.1k
LBA of ABA from Platinum

The Physically-based Data Augmentation Approach:
Leveraging Physical Calculations of ABA to Fill the Gap

(Reichstein et al., Nature, 2019 & Xie et al., preprint, 2018)

* Expansion of the training dataset
for under sampled domains

* Data augmentation is crucial to
avoid overfitting

-------~

ABA of h SNV-
I’Physically-based Data | ot eac
I
|

protein-drug tuple
(pseudo gold-
standard), for
parameterizing

statistical learning

model

Augmenting to i
expand the A BAset |

ﬁ------—’

. . (_\"'
entries in

GenoDock

(Wang et al., 2019)

experimental ABA
of human protein

(Pires et al., 2015)
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3 Feature Groups as Predictor, with 4 Application Cases Based on Info Availability

SNV Feature Ligand Feature -

What are features are

e groups of features as

- B F B B B | \
e_ffe,c,tlve_ for * Allele Frequency * Molecular Weight ( . Di |
prioritization of di . SIFT « H-bond donor i istance
, : 5 predictors « Binding Site |
disruptive SNVs?* * PolyPhen-2 * H-bond acceptor | .
* Polarity Change |
* GERP * Rotatable Bond # I
. . * Volume Change
e Germline/Somatic * Polar Surface Area ‘ I
LB B N N _§ l
_------------I
~ SNV + Structure + Ligand || validate the “full feature” case
° h------------l
Will SNV of interest random forest model SNV + Structure
disrupt protein-ligand trained based on - T — e — —————
St information available . I then, expand the model to 3 more I
SNV + Ligand “feature poor” cases I
I-------------

= SNV only

Wang et al. Structure, 2019 Lectures.gersteinlab.org 47



Framework of the GenoDock Project —-
from Dataset Preparation to Model Construction

(@) g - (b)
ol .’ ------------------------------------------------ 1
= : !
° PDB EXAC & TCGA : : fempiste i
é M map A\ i I ‘ : e
3 Known Structure + Known < ! native co-crystal model of mutant of |
o : ! H .
3 with Drug  Ligand : Structure Sv. by Modeller | Collecting and
= * i Docking w/ Docking w/ i rocessing raw data
g | Ligand Ligand | P g
’ SNV —Structure— Ligand i i
% 10K Dataset ! AGWT AGMUT !
g. ’_______________*_ _______________ i‘ ABA = AGMUT -AG,,, ,i
o | ABAfor each SNl ‘ """""""""""""""""""""""""
10K :\ as pseudo gold standard (UJGS),

.............................. Ligand binding model

\ S for A BA calc.
0.1K LBA data Feature Engineering| SN Feature

& Exploration Ligand = Feature

(c) ¥ [
Structure rFeature
Training via

g Random Forest
§ (INPUT) & (OUTPUT) Statistical model
%f >10M _«SNb ( D'zg*:';vg SNV ] training and testing
3 ~2.7K «#SNin- ‘Ligand -5 [ GenoDock
g ~175K SNl Structure Model —
10k e - G - ((Nordaneive g, |
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List of Models & Datasets in the Study

Model Role

Statistical model

Core from
Model

Physically
based

Auxillery
A Model

Dataset Role Size

Trains

Validates

R e

Wang et al. Structure, 2019

Parameterization

Validation

Source

Built from

PN

Experiment

Model 1: statistical model (GenoDock)
Model 2: ligand binding model (to calculate ABA)

Description

Supervised learning model using the

pseudo gold-standard set as target feature.

The direct validation of this model is to

apply the model to an independent, experi-

ment-based validation dataset.

A physical-based, previously published
computational ligand-docking model to
calculate binding affinity change for the
pseudo gold standard set.

Description

Core dataset constructed for training the
statistical model. Contains pseudo gold
standard set as the target feature.

The human protein subset from Platinum.

used as direct validation dataset of our
statistical method.

KEY TAKE-AWAY

/

The statistical model and
ligand binding model are
the two models for this
study;

The validation of the
statistical model and the
assessment of rigor of
the ligand binding model
are two independent
process.

’—-----

~--------’
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Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs

* PsychENCODE: Population-level analysis of * GenoDock: Building a predictor
functional genomics data related to for the sensitivity of drug binding
neuropsychiatric disease to personal SNVs

— Construction of an adult brain resource with 1866 - Hybrid classifier connecting
individuals + full developmental time-course physical modelling with

— Using the changing proportions of cell types (via statistical learning
single-cell deconvolution) to account for « The modeling creates a
expression variation across a population, pseudo gold-standard
disorders & development dataset, which is used to

- Large-scale processing defines ~79K PFC train the stat. classifier
enhancers & creates a comprehensive QTL - Classifier Results
resource (~2.5M eQTLs + cQTLs & fQTLs) * Independent validation

— Connecting the QTLs, enhancer activity relationships on an expt. validation set
& Hi-C contacts into a brain regulatory network & * Gives higher disruption
using this to link SCZ GWAS SNPs to genes scores to cancer driver

. . SNVs. Also, illustrates

- Embeddlng_the reg. network In a . importance of different

deep-learning model to predict psychiatric disease features (eg GERP).

from genotype & transcriptome. Using this to suggest | Picks out certain drugs (e
specific pathways & genes, as potential drug targets. imatinib) as being pagrticulgrly

Other resource uses: highlighting aging related genes sensitive to SNVs
+ consistently comparing the brain to other organs



The pseudo Gold-Standard as Self-Constructed Prediction Target:
Physical Calculations for Binding Affinity Score Change (ABA)

I I I D D D D D D D D B B O
= r . . ) ) * Pearson Product-Moment Correlation (PMCC) reveals
L ExAC: 8565 SNV-PDB native-mutant pairs I good consistency of different docking calculations
g \ TCGA: 1718 SNV-PDB native-mutant pairs |  PMCC (Vina & AD4) = 0.89
- — — — — — — — — — — - —_—— * PMCC (Vina & MDock) = 0.94
g r o I AutoDock Vina (Vina) /( .
2| 1 AAG(SNV) = AG(SNV)-AG(WT) | = | . mpock ; _
© £ 2.0 | BN AutoDock4 (AD4)
g_ ----------------’ >~ .
m© 8
w AG(WT): BA of WT protein-drug complex itu_ f
AG(SNV): BA of point mutated protein-drug complex & 1.0 ]
AAG(SNP): BA change c
2 /
— [*]
% -E' 0.0 r
@ AutoDock AutoDock £ .
S Vina 4 ®
5 "
< el _g 2.0 '/
Vina, AD4 and MDock use different score functions :

Check consistency of A BA results of Vina using 2 more 0 4000 8000
methods with different score function SNV samples in GenoDock database
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“Illlllllllllllllllllllllllllll...

Given the pseudo Gold-Standard, the Workflow for Building the Statistical
Model & its Performance in Cross-validation & Independent Testing

1. Model training 2. Evaluation
Training set (70%) Selected model
n disruptive SNVs
n non-disruptive SNVs @ @ n n
P T ‘era,, Test set (30%)

*
o 10-fold N .
cross-validation Training folds Test fold\‘ n disruptive SNVs:
|
I 1 / n non-disruptive SNVs:

Bunsa) |apo "¢

Development for Independent Validation
ond iteration .j GenoDock (Platinum Experiment Dataset)

3rd jiteration .

test on experiment cross validation on pseudo G.S.
data auROC= 0.62 auROC=0.97

1 Oth
iteration

4
Sy g EEEEEEEEEEEEEEEEEEEEEEEEEEERS

Finalized

.
*
*
*
*

0. “
Sy pEEEEEEEEEEEEEEEEEEEEEEEEEEEEEERS
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Example of the Output of the Classifier: GenoDock Helps Characterize

Known & Unknown SNVs that Disrupt Protein-Ligand Binding

VISUALIZATION DECISION FLOW EXPLANATION
(a) .
%ﬁ / ‘e, mutation
E IRE 1 @distance from close to
T790 - ligand < 3A ligand
*
‘Q
fEEEEEEEE N EEEEEEEEEEEEEEEER “ \ steric
3@ volume hindrance
|5 increased by
= 38.3% oommmmee .
M790 4l GERP=59 : ) ;Tb. of : hl%h Iéan\7Ct
J PPH=1 i >0by y
human EGFR & gefitinib (IRE) o B SIFT =0 |  GenoDock: I features
PDB: 2ity 8 o840k,
®) / e, mutation
E R112 1 @ distance from close to
w ligand < 3A ligand
— .
ZoL <N .
I EE E EEEEEEEEEEEEEEEEEEEEENEETR 4. GERPScorez4-0 Ihltgh
3 evolutionary
5 / significance
= large polar surface - .
2 H112 7A T rea of ligand [ Prob.of 1 it bridge
10® increased I 4BA>0by :
human FPPS & zoledronate (ZOL) hydrophobicity I:> : Ge;gosD;ck: : disappeared
\ .07 7

PDB: 4p0w

@ structure Feature[ll SNV Feature A Ligand Feature 1-10: Feature significance rank by Gini Distance for selected features

* A BA > 0 validated by docking calculations

Wang et al. Structure, 2019
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Overall feature characterization: Boxplot Distribution between
Disruptive & Non-Disruptive SNVs for Different Feature Groups

- Non-disruptive nsSNVs (ND) - Disruptive nsSNVs (D)

(a) SNV Features (b) Structure Features (c) Drug Ligand Features
1.0 1.0 ‘ O T : 300 e '
0.8 0.8 i 4.0
0.6 0.6 ' {200 ——
0.4 0.4 — ;00
0.2 0.2 P 40 {100 I
0.0 1 o0 | T st | [ L e,
ND D ND D P ND D ND D
PPH SIFT Side-chain { Ligand Polar Surface Area
p-value = 9.34e-25 p-value = 1.55e-19 i Hydropathy Change p-value =0.0420
: p-value = 0.0257 :
5 I ; I | 5225 l 1.5 . ! 800 : '
e e 1.0 — | — o
0 1 : 150 0.5 : 600
s oo | EEE T |} a0
: 75 -0.5 :
-10 | i -1.0 1 : 200
ND D ND D ND D ND D
GERP Distance Side-chain . Ligand Molecular Weight

p-value = 1.41e-4 p-value = 1.95e-284 Volume Change p-value = 2.04e-7
: p-value = 8.81e-21 :
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Gini Distance for Relative Feature Importance in 4 Models

Mean Decrease Gini

—
Q
—

allele_freq

SNV Only

SIFT_score

features

PPH_score

gerp_score

(b) allele_freq

SIFT_score
PPH_score

gerp_score

features

bind_site

S
|

SNV + PDB

T
03

00 01 02
feature importance
(c) et SNV + Ligand

SIFT_score
PPH_score
gerp_score

bind_site

motecutar_weight {1
H_bond_donor -

H_bond_acceptor

features

rotatable_bond

Polar_Surface_Area

( d ) allele_freq

SIFT_score
PPH_score
gerp_score

bind_site
olarity_change_index
olumn_change_index
distance

features

molecular_weight
H_bond_donor
H_bond_acceptor
rotatable_bond
Polar_Surface_Area

0.00 . 0.10

Wang et al. Structure, 2019

005

015

010

SNV + PDB + Ligand

005 010 015 020 025 030

Important features incl. GERP & distance to binding site
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Boxplot of Overall Ligand Binding Affinity Changes
for Different Types of SNVs in GenoDock

@ npercentage of SNV leads to ABA<0
. A BA in different groups of SNV that leads to A BA >0
@ percentage of SNV leads to ABA=0
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associated, the
greater chance
that this SNV
would destabilize
binding affinity
of the protein
and drug ligand.
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Application of GenoDock to large-scale screening of

disruptive SNVs for Drug Ligand interactions N | _ Aceta-
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Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs

* PsychENCODE: Population-level analysis of * GenoDock: Building a predictor
functional genomics data related to for the sensitivity of drug binding
neuropsychiatric disease to personal SNVs

— Construction of an adult brain resource with 1866 - Hybrid classifier connecting
individuals + full developmental time-course physical modelling with

— Using the changing proportions of cell types (via statistical learning
single-cell deconvolution) to account for « The modeling creates a
expression variation across a population, pseudo gold-standard
disorders & development dataset, which is used to

- Large-scale processing defines ~79K PFC train the stat. classifier
enhancers & creates a comprehensive QTL - Classifier Results
resource (~2.5M eQTLs + cQTLs & fQTLs) * Independent validation

— Connecting the QTLs, enhancer activity relationships on an expt. validation set
& Hi-C contacts into a brain regulatory network & * Gives higher disruption
using this to link SCZ GWAS SNPs to genes scores to cancer driver

. . SNVs. Also, illustrates

- Embeddlng_the reg. network In a . importance of different

deep-learning model to predict psychiatric disease features (eg GERP).

from genotype & transcriptome. Using this to suggest | Picks out certain drugs (e
specific pathways & genes, as potential drug targets. imatinib) as being pagrticulgrly

Other resource uses: highlighting aging related genes sensitive to SNVs
+ consistently comparing the brain to other organs



Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs

 PsychENCODE: Population-level analysis of

functional genomics data related to
neuropsychiatric disease

Construction of an adult brain resource with 1866
individuals + full developmental time-course

Using the changing proportions of cell types (via
single-cell deconvolution) to account for
expression variation across a population,
disorders & development

Large-scale processing defines ~79K PFC
enhancers & creates a comprehensive QTL
resource (~2.5M eQTLs + cQTLs & fQTLSs)

Connecting the QTLs, enhancer activity relationships
& Hi-C contacts into a brain regulatory network &
using this to link SCZ GWAS SNPs to genes

Embedding the reg. network in a

deep-learning model to predict psychiatric disease
from genotype & transcriptome. Using this to suggest
specific pathways & genes, as potential drug targets.

Other resource uses: highlighting aging related genes
+ consistently comparing the brain to other organs

« GenoDock: Building a predictor
for the sensitivity of drug binding
to personal SNVs

- Hybrid classifier connecting
physical modelling with
statistical learning

 The modeling creates a

pseudo gold-standard
dataset, which is used to
train the stat. classifier

- Classifier Results
* Independent validation

on an expt. validation set

Gives higher disruption
scores to cancer driver
SNVs. Also, illustrates

importance of different
features (eg GERP).

Picks out certain drugs (eg
imatinib) as being particularly
sensitive to SNVs



“Adult Capstone” Team — 1 of 3 capstones

PsychENCODE
Acknowledgment Daifeng Wang, Shuang Liu, Jonathan Warrell, Hyejung

Won, Xu Shi, Fabio Navarro, Declan Clarke, Mengting Gu,

Prashant Emani, Yucheng T. Yang, Min Xu, Michael Gandal, Shaoke Lou, Jing
National Institute Zhang, Jonathan J. Park, Chengfei Yan, Suhn Kyong Rhie, Kasidet
of Mental Health Manakongtreecheep, Holly Zhou, Aparna Nathan, Mette Peters, Eugenio Mattei,
Dominic Fitzgerald, Tonya Brunetti, Jill Moore, Yan Jiang, Kiran Girdhar, Gabriel
Hoffman, Selim Kalayci, Zeynep Hulya Gumus, Greg Crawford,

PsychENCODE Consortium,
«  David Panchision Panos Roussos, Schahram Akbarian, Andrew E. Jaffe, Kevin White, Zhiping Weng,
+ Alexander Arguello Nenad Sestan,

- Thomas Lehner Daniel H. Geschwind, James A. Knowles, Mark Gerstein

*  Geetha Senthil
* Lora Bingaman

Dedicated to Pamela Sklar

The PsyChENCODE Consortium: Anison E Ashley-Koch, Duke University; Gregory E Crawford, Duke University; Melanie E Garrett, Duke University; Lingyun Song, Duke University; Alexias Safi, Duke University;
Graham D Johnson, Duke University; Gregory A Wray, Duke University; Timothy E Reddy, Duke University; Fernando S Goes, Johns Hopkins University; Peter Zandi, Johns Hopkins University; Julien Bryois, Karolinska Institutet; Andrew E
Jaffe, Lieber Institute for Brain Development; Amanda J Price, Lieber Institute for Brain Development; Nikolay A Ivanov, Lieber Institute for Brain Development; Leonardo Collado-Torres, Lieber Institute for Brain Development; Thomas M
Hyde, Lieber Institute for Brain Development; Emily E Burke, Lieber Institute for Brain Development; Joel E Kleiman, Lieber Institute for Brain Development; Ran Tao, Lieber Institute for Brain Development; Joo Heon Shin, Lieber Institute for
Brain Development; Schahram Akbarian, Icahn School of Medicine at Mount Sinai; Kiran Girdhar, Icahn School of Medicine at Mount Sinai; Yan Jiang, Icahn School of Medicine at Mount Sinai; Marija Kundakovic, Icahn School of Medicine at
Mount Sinai; Leanne Brown, Icahn School of Medicine at Mount Sinai; Bibi S Kassim, Icahn School of Medicine at Mount Sinai; Royce B Park, Icahn School of Medicine at Mount Sinai; Jennifer R Wiseman, Icahn School of Medicine at Mount
Sinai; Elizabeth Zharovsky, Icahn School of Medicine at Mount Sinai; Rivka Jacobov, Icahn School of Medicine at Mount Sinai; Olivia Devillers, Icahn School of Medicine at Mount Sinai; Elie Flatow, Icahn School of Medicine at Mount Sinai;
Gabriel E Hoffman, Icahn School of Medicine at Mount Sinai; Barbara K Lipska, Human Brain Collection Core, National Institutes of Health, Bethesda, MD; David A Lewis, University of Pittsburgh; Vahram Haroutunian, Icahn School of Medicine
at Mount Sinai and James J Peters VA Medical Center; Chang-Gyu Hahn, University of Pennsylvania; Alexander W Charney, Mount Sinai; Stella Dracheva, Mount Sinai; Alexey Kozlenkov, Mount Sinai; Judson Belmont, Icahn School of
Medicine at Mount Sinai; Diane DelValle, Icahn School of Medicine at Mount Sinai; Nancy Francoeur, Icahn School of Medicine at Mount Sinai; Evi Hadjimichael, Icahn School of Medicine at Mount Sinai; Dalila Pinto, Icahn School of Medicine at
Mount Sinai; Harm van Bakel, Icahn School of Medicine at Mount Sinai; Panos Roussos, Mount Sinai; John F Fullard, Mount Sinai; Jaroslav Bendl, Mount Sinai; Mads E Hauberg, Mount Sinai; Lara M Mangravite, Sage Bionetworks; Mette A
Peters, Sage Bionetworks; Yooree Chae, Sage Bionetworks; Junmin Peng, St. Jude Children’s Hospital; Mingming Niu, St. Jude Children's Hospital; Xusheng Wang, St. Jude Children's Hospital; Maree J Webster, Stanley Medical Research
Institute; Thomas G Beach, Banner Sun Health Research Institute; Chao Chen, Central South University; Yi Jiang, Central South University; Rujia Dai, Central South University; Annie W Shieh, SUNY Upstate Medical University; Chunyu Liu,
SUNY Upstate Medical University; Kay S. Grennan, SUNY Upstate Medical University; Yan Xia, SUNY Upstate Medical University/Central South University; Ramu Vadukapuram, SUNY Upstate Medical University; Yongjun Wang, Central South
University; Dominic Fitzgerald, The University of Chicago; Lijun Cheng, The University of Chicago; Miguel Brown, The University of Chicago; Mimi Brown, The University of Chicago; Tonya Brunetti, The University of Chicago; Thomas
Goodman, The University of Chicago; Majd Alsayed, The University of Chicago; Michael J Gandal, University of California, Los Angeles; Daniel H Geschwind, University of California, Los Angeles; Hyejung Won, University of California, Los
Angeles; Damon Polioudakis, University of California, Los Angeles; Brie Wamsley, University of California, Los Angeles; Jiani Yin, University of California, Los Angeles; Tarik Hadzic, University of California, Los Angeles; Luis De La Torre
Ubieta, UCLA; Vivek Swarup, University of California, Los Angeles; Stephan J Sanders, University of California, San Francisco; Matthew W State, University of California, San Francisco; Donna M Werling, University of California, San
Francisco; Joon-Yong An, University of California, San Francisco; Brooke Sheppard, University of California, San Francisco; A Jeremy Willsey, University of California, San Francisco; Kevin P White, The University of Chicago; Mohana Ray,
The University of Chicago; Gina Giase, SUNY Upstate Medical University; Amira Kefi, University of lllinois at Chicago; Eugenio Mattei, University of Massachusetts Medical School; Michael Purcaro, University of Massachusetts Medical
School; Zhiping Weng, University of Massachusetts Medical School; Jill Moore, University of Massachusetts Medical School; Henry Pratt, University of Massachusetts Medical School; Jack Huey, University of Massachusetts Medical School;
Tyler Borrman, University of Massachusetts Medical School; Patrick F Sullivan, University of North Carolina - Chapel Hill; Paola Giusti-Rodriguez, University of North Carolina - Chapel Hill; Yunjung Kim, University of North Carolina - Chapel
Hill; Patrick Sullivan, University of North Carolina - Chapel Hill; Jin Szatkiewicz, University of North Carolina - Chapel Hill; Suhn Kyong Rhie, University of Southern California; Christoper Armoskus, University of Southern California; Adrian
Camarena, University of Southern California; Peggy J Farnham, University of Southern California; Valeria N Spitsyna, University of Southern California; Heather Witt, University of Southern California; Shannon Schreiner, University of
Southern California; Oleg V Evgrafov, SUNY Downstate Medical Center; James A Knowles, SUNY Downstate Medical Center; Mark Gerstein, Yale University; Shuang Liu, Yale University; Daifeng Wang, Stony Brook University; Fabio C. P.
Navarro, Yale University; Jonathan Warrell, Yale University; Declan Clarke, Yale University; Prashant S. Emani, Yale University; Mengting Gu, Yale University; Xu Shi, Yale University; Min Xu, Yale University; Yucheng T. Yang, Yale University;
Robert R. Kitchen, Yale University; Gamze Guisoy, Yale University; Jing Zhang, Yale University; Becky C Carlyle, Yale University; Angus C Nairn, Yale University; Mingfeng Li, Yale University; Sirisha Pochareddy, Yale University; Nenad
Sestan, Yale University; Mario Skarica, Yale University; Zhen Li, Yale University; Andre M.M. Sousa, Yale University; Gabriel Santpere, Yale University; Jinmyung Choi, Yale University; Ying Zhu, Yale University; Tianliuyun Gao, Yale 1
University; Daniel J Miller, Yale University; Adriana Cherskov, Yale University; Mo Yang, Yale University; Anahita Amiri, Yale University; Gianfilippo Coppola, Yale University; Jessica Mariani, Yale University; Soraya Scuderi, Yale University; Q
Anna Szekely, Yale University; Flora M Vaccarino, Yale University; Feinan Wu, Yale University; Sherman Weissman, Yale University; Tanmoy Roychowdhury, Mayo Clinic Rochester; Alexej Abyzov, Mayo Clinic Rochester;. \o



Developmental Capstone

M Li, G Santpere, Y Imamura Kawasawa,
OV Evgrafov, FO Gulden, S Pochareddy,
SM Sunkin, Z Li, Y Shin,

Y Zhu, AMM Sousa, DM Werling, RR Kitchen, HJ Kang, M Pletikos, J Choi, S Muchnik, X Xu,
D Wang, B Lorente-Galdos, S Liu, P Giusti-Rodriguez, H Won, CA de Leeuw, AF Pardinas,
BrainSpan Consortium,

PsychENCODE Consortium, PsychENCODE Developmental Subgroup,
M Hu, F Jin, Y Li, MJ Owen, MC O'Donovan, JTR Walters, D Posthuma, MA Reimers, P
Levitt, DR Weinberger, TM Hyde, JE Kleinman, DH Geschwind, MJ Hawrylycz, MW State, SJ

Sanders, PF Sullivan,

ES Lein, JA Knowles, N Sestan

psychencode.org
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See GenoDock.molmovdb.org
JOBS.gersteinIab.org B Wang, C Yan,

Hiring Postdocs S Lou, P Emani, B Li, M Xu, X Kong, W Meyerson, Y Yang, D Lee
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Info about content in this slide pack

 General PERMISSIONS

- This Presentation is copyright Mark Gerstein,
Yale University, 2019.

- Please read permissions statement at

www.gersteinlab.org/misc/permissions.htmi .

- Feel free to use slides & images in the talk with PROPER acknowledgement
(via citation to relevant papers or link to gersteinlab.org).

- Paper references in the talk were mostly from Papers.GersteinLab.org.

« PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and

clipped images in this presentation see http://streams.gerstein.info .

- In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be
easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt
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