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Brain Genomics:
Using population-scale functional genomics to suggest potential drug 

targets for neuropsychiatic disease & building a hybrid classifier to 
predict the differential sensitivity of individuals to drugs 

Slides freely downloadable
from Lectures.GersteinLab.org

& “tweetable” (via @MarkGerstein)

M Gerstein
Yale
(See last slide for more info.)
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The Genomic Future
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Many big projects. 
Soon millions will be sequenced….

https://www.mongodb.com/press/genomics-england-uses-
mongodb-to-power-the-data-science-behind-the-100000-
genomes-project
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What to do with these 
variants in relation to 

disease

• Personalized risk prediction 
for many conditions

• Precision oncology
• Drug target identification 

via genetic associations
• Accounting for differential 

drug sensitivity



Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs 

• PsychENCODE: Population-level analysis of 
functional genomics data related to 
neuropsychiatric disease
- Construction of an adult brain resource with 1866 

individuals + full developmental time-course
- Using the changing proportions of cell types (via 

single-cell deconvolution) to account for 
expression variation across a population, 
disorders & development

- Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive QTL 
resource (~2.5M eQTLs + cQTLs & fQTLs)

- Connecting the QTLs, enhancer activity relationships 
& Hi-C contacts into a brain regulatory network & 
using this to link SCZ GWAS SNPs to genes

- Embedding the reg. network in a 
deep-learning model to predict psychiatric disease 
from genotype & transcriptome. Using this to suggest 
specific pathways & genes, as potential drug targets.

- Other resource uses: highlighting aging related genes 
+ consistently comparing the brain to other organs

• GenoDock: Building a predictor 
for the sensitivity of drug binding 
to personal SNVs
- Hybrid classifier connecting

physical modelling with 
statistical learning

• The modeling creates a 
pseudo gold-standard 
dataset, which is used to 
train the stat. classifier

- Classifier Results
• Independent validation 

on an expt. validation set
• Gives higher disruption 

scores to cancer driver 
SNVs. Also, illustrates 
importance of different 
features (eg GERP).

• Picks out certain drugs (eg
imatinib) as being particularly 
sensitive to SNVs
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PsychENCODE
’18 rollout in Science 

11 papers in total. 
Major material in the 3 capstones:

Wang et al. (‘18), Li et al. (‘18), Gandal et al. ('18)
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A core issue addressed by PsychENCODE: 
Using functional genomics to reveal molecular mechanisms 

between genotype and phenotype in brain disorders

Genotype

AGEBPDSCZ

Phenotype

Genes

Modules

pathways, 
circuits

Cell types

…

Regulatory 
elements

*h
ttp

s:
//w

w
w

.s
np

ed
ia

.c
om

/in
de

x.
ph

p/
H

er
ita

bi
lit

y

Disease Heritability* Molecular Mechanisms

Schizophrenia 81% (C4A)

Bipolar disorder 70% -

Alzheimer's disease 58 - 79% Apolipoprotein E (APOE), Tau

Hypertension 30% Renin–angiotensin–aldosterone

Heart disease 34-53% Atherosclerosis, VCAM-1

Stroke 32% Reactive oxygen species (ROS), 
Ischemia

Type-2 diabetes 26% Insulin resistance

Breast Cancer 25-56% BRCA, PTEN

Many psychiatric conditions are highly heritable
Schizophrenia: up to 80%

But we don’t understand basic molecular mechanisms underpinning this association 
(in contrast to many other diseases such as cancer & heart disease)

Thus, interested in developing predictive models of psychiatric traits which:
Use observations at intermediate (molecular levels) levels to inform latent structure
Use the predictive features of these “molecular endo phenotypes” to begin to suggest 
actors involved in mechanism



9
-L

ec
tu

re
s.

G
er

st
ei

nL
ab

.o
rg

A core issue addressed by PsychENCODE: 
Using functional genomics to reveal molecular 

mechanisms between genotype and phenotype in 
brain disorders
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Disease Heritability* Molecular Mechanisms

Schizophrenia 81% Complement Component 
4A (C4A)

Bipolar disorder 70% HOMER1

Alzheimer's disease 58 - 79% Apolipoprotein E (APOE), 
Tau

Hypertension 30% Renin–angiotensin–
aldosterone

Heart disease 34-53% Atherosclerosis, VCAM-1

Stroke 32% Reactive oxygen species 
(ROS), Ischemia

Type-2 diabetes 26% Insulin resistance

Breast Cancer 25-56% BRCA, PTEN
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Developmental Capstone Data Set 

[Li et al. (‘18) Science]

• 60 Individuals in total
• Ages from 5 PCW to 64 yrs.
• 16 brain regions for > 9 PCW 
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Collecting 
functional 
genomic 
datasets 
for the 

adult brain 

from 
PsychENCODE, 

other large 
consortia & single 

cell studies

1866
Individuals
~3.7K bulk RNA-seq
~32K single-cells  

[Wang et al. (‘18) Science]
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Lake et al., 2018 data PEC adult data 
[Li et al. (‘18), Science. Wang et al. (‘18). Science]

Merging & Clustering Single Cell Data Sets
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Single-cell 
deconvolution 
Step 1:

Supervised 
learning to 
estimate cell 
fractions

Individual and cross-population 
reconstruction accuracy via 
deconvolution

88%±4%

[Wang et al. (‘18) Science]
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Single-cell 
deconvolution 

Step 2: 

Unsupervised 
learning to determine 

relevant cell types
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Single cell signatures, from:

• ~14K cells 
(Lake et al.,‘16 & ‘18)

• ~400 cells 
(Darmanis et al., PNAS, ‘15)

• ~18K cells (PsychENCODE)

[Wang et al. (‘18) Science]

Identifying NMF components representing hidden features of 
bulk gene expression data

NMF components show high correlation w/ relevant cell types
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Different neuronal & glial cell 
fractions across disorders

Excitatory to Inhibitory imbalance at 
neuronal subtype level for ASD*
* Rubenstein et al., Model of autism: increased ratio of excitation/inhibition in key neural systems, Genes Brain 
Behav. 2003

Ex5 In6 Oligo

[Wang et al. (‘18) Science]
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Different neuronal & glial cell 
fractions across ages

[Li et al. (‘18) Science]



Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs 

• PsychENCODE: Population-level analysis of 
functional genomics data related to 
neuropsychiatric disease
- Construction of an adult brain resource with 1866 

individuals + full developmental time-course
- Using the changing proportions of cell types (via 

single-cell deconvolution) to account for 
expression variation across a population, 
disorders & development

- Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive QTL 
resource (~2.5M eQTLs + cQTLs & fQTLs)

- Connecting the QTLs, enhancer activity relationships 
& Hi-C contacts into a brain regulatory network & 
using this to link SCZ GWAS SNPs to genes

- Embedding the reg. network in a 
deep-learning model to predict psychiatric disease 
from genotype & transcriptome. Using this to suggest 
specific pathways & genes, as potential drug targets.

- Other resource uses: highlighting aging related genes 
+ consistently comparing the brain to other organs

• GenoDock: Building a predictor 
for the sensitivity of drug binding 
to personal SNVs
- Hybrid classifier connecting

physical modelling with 
statistical learning

• The modeling creates a 
pseudo gold-standard 
dataset, which is used to 
train the stat. classifier

- Classifier Results
• Independent validation 

on an expt. validation set
• Gives higher disruption 

scores to cancer driver 
SNVs. Also, illustrates 
importance of different 
features (eg GERP).

• Picks out certain drugs (eg
imatinib) as being particularly 
sensitive to SNVs
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Characterize brain specific enhancers

[Wang et al. (‘18) Science]

Developing a Reference Set of ~79K PFC Enhancers 
& Studying Their Population Variation

Consistent with ENCODE, active 
enhancers are identified as open 
chromatin regions enriched in 
H3K27ac and depleted in H3K4me3  
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Characterize brain specific enhancers

[Wang et al. (‘18) Science]

Developing a Reference Set of ~79K PFC Enhancers 
& Studying Their Population Variation
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Gene expression (eQTL) Chromatin (cQTL)

Chromatin variation in the population
Quantitaive Trait Loci (QTLs) associated with variation
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[Wang et al. (‘18) Science]
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present in more than half of the individuals sur-
veyed. In a comparison of aggregated sets for
these three brain regions, the PFC was more
similar to the TC than the CB (~90% versus 34%
overlap in peaks). This difference is consistent
with previous reports and suggests potentially
different cell-type composition in the CB and the
cortex (33, 34).

We also examined howmany of the enhancers
in the reference brain are active (i.e., have en-
richedH3K27ac) in each of the individuals in our
cohort. As expected, not every reference enhancer
was active in each individual. On average, only
~70% ± 15% (~54,000) of the enhancers in the
reference brain were active in an individual in the
cohort, and a similar fraction of the reference

enhancerswas active inmore than half the cohort
(68%) (Fig. 3B). To estimate the total number of
enhancers in the PFC, we calculated the cumu-
lative number of active regions across the cohort
(fig. S25). This increased for the first 20 individ-
uals sampled but saturated at the 30th. Thus, we
hypothesize that pooling PFC enhancers from
~30 individuals is sufficient to cover nearly all

Wang et al., Science 362, eaat8464 (2018) 14 December 2018 5 of 13
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Fig. 4. QTLs in the adult brain. (A) The frequency of genes with at least
one eQTL (eGenes) is shown across different studies.The number of eGenes
increased as the sample size increased. PsychENCODE eGenes are close
to saturation for protein-coding genes. The estimated replication p1 values
for GTEx and CMC eQTLs versus PsychENCODE are shown (36). (B) The
similarity between PsychENCODE brain dorsolateral PFC (DLPFC) eQTLs
and GTEx eQTLs of other tissues are evaluated by p1 values and SNP-eGene
overlap rates. Both p1 values and SNP-eGene overlap rates are higher for
brain DLPFC than for the other tissues. (C) An example of an H3K27ac
signal across individuals in a representative genomic region, showing largely
congruent identification of regions of open chromatin.The region within the
dashed rectangle represents a cQTL; the signal magnitudes for individuals
with a G/G or G/Tgenotype were lower than those for individuals with a
T/Tgenotype. chr1, chromosome 1; rs, reference SNP. (D) An example of the
mechanism by which an fQTL may affect phenotype.This fQTL overlaps with
an eQTL for FZD9, a gene located in the 7q11.23 region that is deleted in
Williams syndrome.The fQTLmay affect the fraction of Ex3 by regulating FZD9

expression. Only Ex3 constitutes a statistically significant fQTLwith this SNP
(as designated by the asterisk). ref, reference; alt, alternate. (E) The
enrichment of QTLs in different genomic annotations is shown. Pink circles
indicate highly significant enrichment (P < 1 × 10−25 and OR > 2.5). OR,
odds ratio; TFBS,TF binding site; UTR, untranslated region. (F) Numbers
of identified QTL-associated elements (eGenes, enhancers, and cell types) and
QTL SNPs are shown in the bottom left table. Asterisks indicate that, for
cQTLs, we show only the number of top SNPs for each enhancer. Overlaps of
all QTL SNPs are shown in heatmaps (square rows).The linked circles show
the overlap of QTL types.The intersections of other QTLs with eQTLs are
evaluated by using p1 values in the orange bar plot.The greatest intersection
is between cQTLs and eQTLs. An example is displayed on the right: the
intersection of eQTL SNPs (for the MTOR gene) and cQTL SNPs (for the
H3K27ac signal on an enhancer ~50 kbupstreamof the gene). Hi-C interactions
(bottom) indicate that the enhancer interacts with the promoter of MTOR,
suggesting that the cQTLSNPs potentially mediate the expression modulation
manifest by the eQTL SNPs.

RESEARCH | RESEARCH ARTICLE | PSYCHENCODE

on February 22, 2019
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Cell fraction QTLs (fQTLs)

[Wang et al. (‘18) Science]
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Larger brain eQTL sets than previous studies, 
but strong overlap with them

[Wang et al. (‘18) Science]

2,542,908 eQTLs (FDR< 0.05)
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multi-QTLs from overlapping 
different types of QTLs: 

cQTL, fQTL, eQTL & isoQTL

eQTLs for mTOR 
mediated by 

cQTLs

1391 SNPs (multi-QTLs) 
in at least three types 
among eQTLs, isoQTLs, 
cQTLs, fQTLs

eQTLs and cQTLs
significantly 

overlap

eQTL
isoQTL
cQTL
fQTL

[Wang et al. (‘18) Science]
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Brain eQTLs and enhancers enriched with GWAS 
SNPs for brain disorders

Enrichment

Wang, et al., Science, 2018



Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs 

• PsychENCODE: Population-level analysis of 
functional genomics data related to 
neuropsychiatric disease
- Construction of an adult brain resource with 1866 

individuals + full developmental time-course
- Using the changing proportions of cell types (via 

single-cell deconvolution) to account for 
expression variation across a population, 
disorders & development

- Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive QTL 
resource (~2.5M eQTLs + cQTLs & fQTLs)

- Connecting the QTLs, enhancer activity relationships 
& Hi-C contacts into a brain regulatory network & 
using this to link SCZ GWAS SNPs to genes

- Embedding the reg. network in a 
deep-learning model to predict psychiatric disease 
from genotype & transcriptome. Using this to suggest 
specific pathways & genes, as potential drug targets.

- Other resource uses: highlighting aging related genes 
+ consistently comparing the brain to other organs

• GenoDock: Building a predictor 
for the sensitivity of drug binding 
to personal SNVs
- Hybrid classifier connecting

physical modelling with 
statistical learning

• The modeling creates a 
pseudo gold-standard 
dataset, which is used to 
train the stat. classifier

- Classifier Results
• Independent validation 

on an expt. validation set
• Gives higher disruption 

scores to cancer driver 
SNVs. Also, illustrates 
importance of different 
features (eg GERP).

• Picks out certain drugs (eg
imatinib) as being particularly 
sensitive to SNVs
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Hi-C

Enhancers
Topologically Associating 

Domain (TAD)

Gene

Potential Enhancer-Promoter 
(E-P) interaction in TAD

Transcription Factor Binding Sites (TFBSs)

TF
Enhancer
Target gene

TFBS on promoter

TFBS on enhancer

!*= "#$%&'( ) − +! , + " ! , + . ! /0
TF expression (X) to predict target gene expression (Y) 
using Elastic net regression

C*i
Expression activity relationship

QTLs

C*j

C*k

Gene regulatory 
network inference 
from Hi-C, QTLs & 

Activity Correlations

[Wang et al. (‘18) Science]
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Imputed gene regulatory network for 
the human brain
Imputed gene regulatory network linking TFs, enhancers and genes plus 
QTLs

subnetworks targeting single cell marker genes
[Wang et al. (‘18) Science]
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Linking GWAS SNPs 
to disease genes using 
the regulatory network

142

321 
high-confident 

SCZ genesActivity

[Wang et al. (‘18) Science]
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GWAS variants and single cell expression levels for 
SCZ genes

Wang, et al., Science, 2018



Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs 

• PsychENCODE: Population-level analysis of 
functional genomics data related to 
neuropsychiatric disease
- Construction of an adult brain resource with 1866 

individuals + full developmental time-course
- Using the changing proportions of cell types (via 

single-cell deconvolution) to account for 
expression variation across a population, 
disorders & development

- Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive QTL 
resource (~2.5M eQTLs + cQTLs & fQTLs)

- Connecting the QTLs, enhancer activity relationships 
& Hi-C contacts into a brain regulatory network & 
using this to link SCZ GWAS SNPs to genes

- Embedding the reg. network in a 
deep-learning model to predict psychiatric disease 
from genotype & transcriptome. Using this to suggest 
specific pathways & genes, as potential drug targets.

- Other resource uses: highlighting aging related genes 
+ consistently comparing the brain to other organs

• GenoDock: Building a predictor 
for the sensitivity of drug binding 
to personal SNVs
- Hybrid classifier connecting

physical modelling with 
statistical learning

• The modeling creates a 
pseudo gold-standard 
dataset, which is used to 
train the stat. classifier

- Classifier Results
• Independent validation 

on an expt. validation set
• Gives higher disruption 

scores to cancer driver 
SNVs. Also, illustrates 
importance of different 
features (eg GERP).

• Picks out certain drugs (eg
imatinib) as being particularly 
sensitive to SNVs
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Deep Structured Phenotype Network 
(DSPN) 

Boltzmann machine 

y: phenotypes

h: hidden units (e.g., circuits)

x: intermediate phenotypes 
(e.g., genes, enhancers)

z: genotypes (e.g., SNPs)

W: weights 
(e.g., regulatory network)
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Cells

…

Edges:

GRN linkages

QTL linkages

L1
(visible or 

imputed units)

L2
(hidden units)

L3
(output units)

…

Nodes:

Visible

Visible or imputed 

Hidden

Cell 
Fractions

Co-expression 
modules

SNPs

Enhancers Genes

eQTL

fQTL

cQTL
Gene 

regulatory 
network

𝑝 𝐱, 𝐲, 𝐡|𝐳 ∝ exp −𝐸 𝐱, 𝐲, 𝐡|𝐳

𝐸 𝐱, 𝐲, 𝐡|𝐳 = −𝐳/𝐖𝟏𝐱 −𝐱/ 𝐖𝟐𝐱 − 𝐱/𝐖𝟑𝐡 − 𝐡/𝐖𝟒𝐡 − 𝐡/𝐖𝟓𝐲 − 𝑩𝒊𝒂𝒔

Gene 
regulatory 
network 
builds 
skeleton

Energy 
model:

[Wang et al. (‘18) Science]
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DSPN improves brain 
disease prediction by 

adding deep layers

Accuracy = chance to correctly predict disease/health

Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%

Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%

Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

X 6.0

[Wang et al. (‘18) Science]
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DSPN improves brain 
disease prediction by 

adding deep layers

Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%

Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%

Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

Accuracy = chance to correctly predict disease/health
X 2.5

[Wang et al. (‘18) Science]
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DSPN improves brain 
disease prediction by 

adding deep layers

Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%

Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%

Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

Accuracy = chance to correctly predict disease/health
X 3.1

[Wang et al. (‘18) Science]
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DSPN as non-linear Polygenic Risk Score 
& relation to missing heritability

[Wang et al. (‘18) Science]

Method LR-genotype (PRS) DSPN-impute DSPN-full
Schizophrenia (SCZ) 54.6% / 0.5% 59.0% / 1.8% 73.6% / 32.8%

Bipolar Disorder 56.7% / 2.5% 67.2% / 10.7% 76.7% / 37.4%
Autism Spectrum Disorder 50.0% / 0% 62.5% / 3.2% 68.3% / 11.3%

• We convert DSPN predictions to estimates of variance explained on 
liability scale (Falconer & Mackay ’96)

• Previous methods estimate 25% heritability explained by common 
SNPs in SCZ => upper-bound on additive PRS

• Explaining DSPN performance: the model incorporates epistatic 
interactions implicitly through reg. network structure & deep-learning 
(DSPN-impute) + possible environmental effects/feedback (DSPN-full)

• Possible ‘missing heritability’ from family study estimates (SCZ, 80%); 
may be overestimate due to extensive epistasis (Zuk et al., ’12)

accuracy / variance explained (liability)
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Multilevel Network Interpretation

[Wang et al. (‘18) Science]

• Sparsify network using edges with largest absolute weights (+/-)
• Extract ‘best positive paths’ through network (e.g. a-a1-a2-SCZ) by 

summing weights and multiplying signs
• Extract associated HOGs (e.g. purple) & prioritized modules (grey)

Actual network size:
5024/400/100/1 nodes
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DSPN discovers enriched pathways 
and linkages to genetic variation

[Wang et al. (‘18) Science]

Cross-disorder MOD/HOG 
enrichment ranking

SCZ

BPD ASD



Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs 

• PsychENCODE: Population-level analysis of 
functional genomics data related to 
neuropsychiatric disease
- Construction of an adult brain resource with 1866 

individuals + full developmental time-course
- Using the changing proportions of cell types (via 

single-cell deconvolution) to account for 
expression variation across a population, 
disorders & development

- Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive QTL 
resource (~2.5M eQTLs + cQTLs & fQTLs)

- Connecting the QTLs, enhancer activity relationships 
& Hi-C contacts into a brain regulatory network & 
using this to link SCZ GWAS SNPs to genes

- Embedding the reg. network in a 
deep-learning model to predict psychiatric disease 
from genotype & transcriptome. Using this to suggest 
specific pathways & genes, as potential drug targets.

- Other resource uses: highlighting aging related genes 
+ consistently comparing the brain to other organs

• GenoDock: Building a predictor 
for the sensitivity of drug binding 
to personal SNVs
- Hybrid classifier connecting

physical modelling with 
statistical learning

• The modeling creates a 
pseudo gold-standard 
dataset, which is used to 
train the stat. classifier

- Classifier Results
• Independent validation 

on an expt. validation set
• Gives higher disruption 

scores to cancer driver 
SNVs. Also, illustrates 
importance of different 
features (eg GERP).

• Picks out certain drugs (eg
imatinib) as being particularly 
sensitive to SNVs



Phase	1	PsychENCODE capstone	resource:	
Layers	of	distributed	information

Material in the 3 capstones:

AC - Wang et al. ('18)
DC - Li et al. ('18)
NC - Gandal et al. ('18)

39

Resource.psychencode.org
Development.psychencode.org
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Cross tissue 
variation in 

Chromatin & 
Expression

Placing the 
Brain

in context of all other 
Body Tissues

Transcriptome diversity increases in 

the non-coding portion of the brain genome 
while decreases in other tissues

Ex
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C

hr
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in

[Wang et al. (‘18) Science]
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NRGN has variable expression over age 
and is in Synaptic vesicle cycle pathway 

is enriched in SCZ, BPD, ASD

0 20 40 60 80

0
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Age (years)
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05

0.
15
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Exp.
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NGRN is a gene 
associated with 
the Synaptic 
vesicle pathway 
and NGRN 
expression and
methylation is
correlated with 
Age

0 20 40 60 80



Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs 

• PsychENCODE: Population-level analysis of 
functional genomics data related to 
neuropsychiatric disease
- Construction of an adult brain resource with 1866 

individuals + full developmental time-course
- Using the changing proportions of cell types (via 

single-cell deconvolution) to account for 
expression variation across a population, 
disorders & development

- Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive QTL 
resource (~2.5M eQTLs + cQTLs & fQTLs)

- Connecting the QTLs, enhancer activity relationships 
& Hi-C contacts into a brain regulatory network & 
using this to link SCZ GWAS SNPs to genes

- Embedding the reg. network in a 
deep-learning model to predict psychiatric disease 
from genotype & transcriptome. Using this to suggest 
specific pathways & genes, as potential drug targets.

- Other resource uses: highlighting aging related genes 
+ consistently comparing the brain to other organs

• GenoDock: Building a predictor 
for the sensitivity of drug binding 
to personal SNVs
- Hybrid classifier connecting

physical modelling with 
statistical learning

• The modeling creates a 
pseudo gold-standard 
dataset, which is used to 
train the stat. classifier

- Classifier Results
• Independent validation 

on an expt. validation set
• Gives higher disruption 

scores to cancer driver 
SNVs. Also, illustrates 
importance of different 
features (eg GERP).

• Picks out certain drugs (eg
imatinib) as being particularly 
sensitive to SNVs
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An Example of Binding Affinity Change between Protein 
& Drug Ligand under the Impact of Single Nucleotide 
Variants (SNV)

Is there any method	that
could predict	the	effects	
of	SNVs	to	drug	binding	
(D	or	ND)?

human EGFR & gefitinib (IRE)
PDB: 2ity, Chain A, amino acid 790
Modeling and Visualization: Modeller & PyMol

IRE
T790

M790

WT

MUT

IRE

Epidermal growth factor receptor
(EGFR) tyrosine kinase inhibitors
(EGFR-TKIs) are used in the
treatments of non-small cell lung
cancer (NSCLC)

• Gefitinib (IRE)	belongs	to	EGFR-TKI

• IRE	- resistant effect with somatic
mutation T790M (rs55181378)

• Increased side-chain volume from T to
M causes steric hinderance that
disrupts the binding

• Well-studies by ligand binding assay	
(LBA)

non-disruptive
SNV	(ND)

disruptive	
SNV	(D)

if	∆BA ≤ 0 if	∆BA > 0

For	protein-drug	binding	upon	
point	mutation,	

Wang et al. Structure, 2019
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Personalized	medicine	has	been	taking	the	benefits	from	the	advent	of	NGS	
techniques	with	booming	in	genome	variation	data	in	the	whole-genome	level.

The	interpretations	of	non-synonymous	coding	SNV	is	significant	due	to	their	
implications	towards	human	health	and	disease.		

One	focus	under	this	topic	is	implications	of	SNVs	onto	protein	drug	binding	
activities,	which	is	significant	for	drug	design.	However,	such	SNV	impacts	is	
hard	to	validate	experimentally.

TCGA

ExAC

OMIM

10k	
genome	
project

ESP

Immense Growth of Both Genetic Variation & 3D Protein Structure Dataset:
Driving Various of SNV Annotation Tools on the Market

HGMD

GWAS

…

No	tool	specifically address impacts of

SNVs on	protein-ligand binding.

Many variant annotation tools
available on the market

Wang et al. Structure, 2019
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Assessment of feasibility to build a supervised-learning classifier
for binding-disruptive SNVs

DA
TA

	
AL
G
O
RI
TH

M
G
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an
d
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LU
TI
O
N

Though	limited	SNVs	could	be	mapped	onto	PDBs,	this	data	pool	keeps	growing.

SNV:	

ExAC	&	TCGA

Structure:
(co-crystal)	
RCSB	PDB

Drug:	

PubChem	
Compound	

availability	of	well-established machine	learning	classification	algorithms

RF LR SVM GB
DT

LBA records of ∆BA for a SNV-
protein-drug sample upon point
mutation is highly scant

Physical calculations to get the
∆BA for each sample to fill the
gap, making it possible for
further statistical modelling

pseudo gold-standard of ∆BA

“real” gold-standard of ∆BA

• Ligand	binding	assay data
• Too few for	model	training

• Ligand-binding	model
• Value	for	each sample

1.	Plausible biophysical	rationales.

2.	Efficacy of	a	given	drug	on
individuals carrying	certain SNVs.

What we may know

Goal of the study

develop	a	rapid	and	efficient	method
that	would	prioritize	disruptive SNVs	
towards drug-target	binding

45

~10K
SNV-structure

-drug

Wang et al. Structure, 2019
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~0.1k
LBA of ∆BA

~10K
SNV-struc.-drug

~175K
SNV-structure

>10M
SNV

Number	of	sequenced	
exonic SNVs

SNVs	mapped	with	
human	PDB	(>2.8Å	)

entries	in	
GenoDock

(Kumar	et	al.,	2016)

(Wang	et	al.,	2019)

experimental	∆BA	
of	human	protein		
from	Platinum

(Pires	et	al.,	2015)

• Expansion	of	the	training	dataset	
for	under	sampled	domains

• Data	augmentation	is	crucial	to	
avoid	overfitting

The	Physically-based	Data	Augmentation	Approach:
Leveraging	Physical	Calculations	of	∆BA	to	Fill	the	Gap	

(Reichstein	et	al.,	Nature,	2019	&	Xie et	al.,	preprint,	2018)

A Hot Topic in Machine Learning is “Hybrid” Model
Integrating Physical & Statistical Calculations

The	Major	Hurdle:	
Highly	Scant	Ligand	Binding	Assay	Data	for ∆BA	

∆BA	of	each	SNV-
protein-drug	tuple
(pseudo	gold-
standard), for
parameterizing

statistical learning
model

~10K

Physically-based	Data	
Augmenting to

expand the ∆	BA set

Docking

am
ou

nt

time 20192015

Wang et al. Structure, 2019



Lectures.gersteinlab.org 47

3 Feature Groups as Predictor, with 4 Application Cases Based on Info Availability 

SNV	+	Structure	+	Ligand

SNV	+	Structure

SNV	+	Ligand	

SNV	only

Will	SNV	of	interest	
disrupt	protein-ligand	

binding

random	forest	model	
trained	based	on	
information	available

4

• Allele	Frequency
• SIFT	
• PolyPhen-2
• GERP
• Germline/Somatic

Ligand	Feature

• Molecular	Weight
• H-bond	donor
• H-bond	acceptor
• Rotatable	Bond	#
• Polar	Surface	Area

SNV	Feature Structure	
Feature

• Distance
• Binding	Site	
• Polarity	Change
• Volume	Change

groups	of	features	as	
predictors

3What	are	features	are	
effective	for	

prioritization	of	
disruptive	SNVs?

validate	the	“full	feature”	case	

then,	expand	the	model	to	3	more	
“feature	poor”	cases

Wang et al. Structure, 2019
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Framework of the GenoDock Project –
from Dataset Preparation to Model Construction

a
Collecting	and	
processing	raw	data

b
Ligand	binding	model	
for	∆	BA	calc.	

c
Statistical	model	
training	and	testing

Wang et al. Structure, 2019
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Core dataset constructed for training the 
statistical model. Contains pseudo gold 
standard set as the target feature.

Supervised learning model using the 
pseudo gold-standard set as target feature. 
The direct validation of this model is to 
apply the model to an independent, experi-
ment-based validation dataset.

The human protein subset from Platinum.  
used as direct validation dataset of our 
statistical method.

A physical-based, previously published 
computational ligand-docking model to 
calculate binding affinity change for the 
pseudo gold standard set.

Model Role Parameterization Validation Description

Dataset Size

ΨGS

Core
Model

Auxillery
Model

~10k

86Platinum

1

2

Validates

1

ΨGS

Statistical model
from

Physically
based

Platinum

Trains

1

Built from

2

Experiment

Role Source Description

-

List of Models & Datasets in the Study

• The	statistical	model	and	
ligand	binding	model	are	
the	two	models	for	this	
study;

• The	validation	of	the	
statistical	model	and	the	
assessment	of	rigor	of	
the	ligand	binding	model	
are	two	independent	
process.

Model	1:	statistical	model	(GenoDock)
Model	2:	ligand	binding	model	(to	calculate	ΔBA)

KEY	TAKE-AWAY

Wang et al. Structure, 2019



Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs 

• PsychENCODE: Population-level analysis of 
functional genomics data related to 
neuropsychiatric disease
- Construction of an adult brain resource with 1866 

individuals + full developmental time-course
- Using the changing proportions of cell types (via 

single-cell deconvolution) to account for 
expression variation across a population, 
disorders & development

- Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive QTL 
resource (~2.5M eQTLs + cQTLs & fQTLs)

- Connecting the QTLs, enhancer activity relationships 
& Hi-C contacts into a brain regulatory network & 
using this to link SCZ GWAS SNPs to genes

- Embedding the reg. network in a 
deep-learning model to predict psychiatric disease 
from genotype & transcriptome. Using this to suggest 
specific pathways & genes, as potential drug targets.

- Other resource uses: highlighting aging related genes 
+ consistently comparing the brain to other organs

• GenoDock: Building a predictor 
for the sensitivity of drug binding 
to personal SNVs
- Hybrid classifier connecting

physical modelling with 
statistical learning

• The modeling creates a 
pseudo gold-standard 
dataset, which is used to 
train the stat. classifier

- Classifier Results
• Independent validation 

on an expt. validation set
• Gives higher disruption 

scores to cancer driver 
SNVs. Also, illustrates 
importance of different 
features (eg GERP).

• Picks out certain drugs (eg
imatinib) as being particularly 
sensitive to SNVs
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The pseudo Gold-Standard as Self-Constructed Prediction Target:
Physical Calculations for Binding Affinity Score Change (ΔBA)

51

Eq
ua
tio

n	

ExAC: 8565	SNV-PDB	native-mutant	pairs
TCGA: 1718	SNV-PDB	native-mutant	pairs

∆∆𝐆 𝐒𝐍𝐕 = ∆𝐆 𝐒𝐍𝐕 -∆𝐆(𝐖𝐓)

∆G(WT):	BA	of	WT	protein-drug	complex
∆G SNV : BA	of	point	mutated		protein-drug	complex
∆∆G SNP : BA	change

Da
ta
se
t	

AutoDock
4MDock AutoDock

Vina

Ap
pr
oa

ch
	

Check	consistency	of	∆	BA	results	of	Vina	using	2	more	
methods	with	different	score	function	

Vina,	AD4	and	MDock use	different	score	functions

• Pearson	Product-Moment	Correlation	(PMCC)	reveals	
good	consistency	of	different	docking	calculations

• PMCC	(Vina	&	AD4)	=	0.89

• PMCC	(Vina	&	MDock)	=	0.94

Wang et al. Structure, 2019

8000
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1st iteration

2nd iteration

3rd iteration

10th

iteration

… …

Training folds Test fold

Training set (70%)

n disruptive SNVs

n non-disruptive SNVs

1. Model training

RF LR SVM GB
DT

2. Evaluation

… RF

Selected model

Test set (30%) 3. M
odel testing

Independent Validation
(Platinum Experiment Dataset)

n disruptive SNVs:

n non-disruptive SNVs:

10-fold
cross-validation

52

Statistical Model
Development for

GenoDock

test on experiment 
data auROC= 0.62

cross validation on pseudo G.S.
auROC=0.97

Fi
na

liz
ed

 
m

od
el

 
Wang et al. Structure, 2019

Given the pseudo Gold-Standard, the Workflow for Building the Statistical 
Model & its Performance in Cross-validation & Independent Testing
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human EGFR & gefitinib (IRE)
PDB: 2ity

IRE
T790

M790

mutation 
close to
ligand

steric
hindrance

high impact 
by SNV 
features

Prob. of
∆	BA > 0 by
GenoDock:

64.0%*

(a)

human FPPS & zoledronate (ZOL)
PDB: 4p0w

ZOL

R112

H112

(b) mutation 
close to
ligand

salt bridge 
disappeared

high 
evolutionary 
significance

DECISION FLOW EXPLANATIONVISUALIZATION
W

T
M

UT

Prob. of
∆	BA > 0 by
GenoDock:

99.8%*

large polar surface 
area of ligand

increased 
hydrophobicity

distance from
ligand < 3Å

1

volume
increased by

33.3%

3

GERP = 5.9
PPH = 1
SIFT =0

4
5
8

distance from
ligand < 3Å

1

7

GERP score ≈ 4.04

Structure Feature SNV Feature Ligand Feature 1-10: Feature significance rank by Gini Distance for selected features
* ∆	BA > 0 validated by docking calculations

W
T

M
UT

10

53

Example of the Output of the Classifier: GenoDock Helps Characterize 
Known & Unknown SNVs that Disrupt Protein-Ligand Binding

Wang et al. Structure, 2019
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Overall feature characterization: Boxplot Distribution between 
Disruptive & Non-Disruptive SNVs for Different Feature Groups

PPH
p-value = 9.34e-25

GERP
p-value = 1.41e-4

SIFT
p-value = 1.55e-19

Distance
p-value = 1.95e-284

Side-chain 
Hydropathy Change

p-value = 0.0257

Side-chain 
Volume Change

p-value = 8.81e-21

Ligand Polar Surface Area
p-value =0.0420

Ligand Molecular Weight
p-value = 2.04e-7

Non-disruptive nsSNVs (ND)

(a) (b) (c)

0.0
0.2
0.4
0.6
0.8
1.0

ND D
0.0
0.2
0.4
0.6
0.8
1.0

ND D ND D ND D

ND D ND D ND D ND D

0.0

4.0

8.0

-4.0

-8.0

100

200

300

0

0

75

150

225

0.0

1.0
1.5

-1.0

0.5

-1.5

-0.5
-10

-5

0

5 800

600

400

200

Disruptive nsSNVs (D)

SNV Features Structure Features Drug Ligand Features

Wang et al. Structure, 2019



SNV Only SNV + PDB

SNV + Ligand SNV + PDB + Ligand

feature importance

fe
at
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es

fe
at
ur
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fe
at
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es

fe
at
ur
es

Mean Decrease Gini

(b)(a)

(c) (d)

Gini Distance for Relative Feature Importance in 4 Models

55Wang et al. Structure, 2019

Important features incl. GERP & distance to binding site
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80%

100%

COMMON
(ExAC)

RARE
(ExAC)

PASSENGER
(TCGA)

DRIVER
(TCGA)

bi
nd

in
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fin

ity
	c
ha

ng
e
(k
ca
l/
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)

percentage

percentage	of	SNV	leads	to	∆	BA	≤	0	

percentage	of	SNV	leads	to	∆	BA	= 0	
∆	BA	in	different	groups	of	SNV	that	leads	to	∆	BA	> 0	

60%

40%

20%

0%0.0

0.2

0.4

0.6

0.8

1.0

P-value:
3.60e-4

Boxplot of Overall Ligand Binding Affinity Changes 
for Different Types of SNVs in GenoDock

56

The	more	an	SNV	
is	considered	
disease-
associated,	the	
greater	chance	
that	this	SNV	
would	destabilize	
binding	affinity	
of	the	protein	
and	drug	ligand.

94% 93% 91%

85%

88% 87% 87%

77%

0.117 kcal/mol 0.129 kcal/mol
0.159 kcal/mol

0.236 kcal/mol

Wang et al. Structure, 2019
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Application of GenoDock to large-scale screening of 
disruptive SNVs for Drug Ligand interactions

0.00 0.25 0.50 0.75 1.00

probability of a disruptive nsSNV

de
ns

ity

0.0

1.0

2.0

3.0

4.0

5.0

probability

21%

51%

7%

65%

33%

35%

32%

11%

18%

36%

de
ns

ity

57Wang et al. Structure, 2019

Aceta-
zolamide
(glaucoma) 

Imatinib
(cancer)



Using population-scale functional genomics to suggest potential drug targets for neuropsychiatic
disease & building a hybrid classifier to predict the differential sensitivity of individuals to drugs 

• PsychENCODE: Population-level analysis of 
functional genomics data related to 
neuropsychiatric disease
- Construction of an adult brain resource with 1866 

individuals + full developmental time-course
- Using the changing proportions of cell types (via 

single-cell deconvolution) to account for 
expression variation across a population, 
disorders & development

- Large-scale processing defines ~79K PFC 
enhancers & creates a comprehensive QTL 
resource (~2.5M eQTLs + cQTLs & fQTLs)

- Connecting the QTLs, enhancer activity relationships 
& Hi-C contacts into a brain regulatory network & 
using this to link SCZ GWAS SNPs to genes

- Embedding the reg. network in a 
deep-learning model to predict psychiatric disease 
from genotype & transcriptome. Using this to suggest 
specific pathways & genes, as potential drug targets.

- Other resource uses: highlighting aging related genes 
+ consistently comparing the brain to other organs

• GenoDock: Building a predictor 
for the sensitivity of drug binding 
to personal SNVs
- Hybrid classifier connecting

physical modelling with 
statistical learning

• The modeling creates a 
pseudo gold-standard 
dataset, which is used to 
train the stat. classifier

- Classifier Results
• Independent validation 

on an expt. validation set
• Gives higher disruption 

scores to cancer driver 
SNVs. Also, illustrates 
importance of different 
features (eg GERP).

• Picks out certain drugs (eg
imatinib) as being particularly 
sensitive to SNVs
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PsychENCODE
Acknowledgment

• Geetha Senthil
• Lora Bingaman
• David Panchision
• Alexander Arguello
• Thomas Lehner

The PsychENCODE Consortium: Allison E Ashley-Koch, Duke University; Gregory E Crawford, Duke University; Melanie E Garrett, Duke University; Lingyun Song, Duke University; Alexias Safi, Duke University; 
Graham D Johnson, Duke University; Gregory A Wray, Duke University; Timothy E Reddy, Duke University; Fernando S Goes, Johns Hopkins University; Peter Zandi, Johns Hopkins University; Julien Bryois, Karolinska Institutet; Andrew E 
Jaffe, Lieber Institute for Brain Development; Amanda J Price, Lieber Institute for Brain Development; Nikolay A Ivanov, Lieber Institute for Brain Development; Leonardo Collado-Torres, Lieber Institute for Brain Development; Thomas M 
Hyde, Lieber Institute for Brain Development; Emily E Burke, Lieber Institute for Brain Development; Joel E Kleiman, Lieber Institute for Brain Development; Ran Tao, Lieber Institute for Brain Development; Joo Heon Shin, Lieber Institute for 
Brain Development; Schahram Akbarian, Icahn School of Medicine at Mount Sinai; Kiran Girdhar, Icahn School of Medicine at Mount Sinai; Yan Jiang, Icahn School of Medicine at Mount Sinai; Marija Kundakovic, Icahn School of Medicine at 
Mount Sinai; Leanne Brown, Icahn School of Medicine at Mount Sinai; Bibi S Kassim, Icahn School of Medicine at Mount Sinai; Royce B Park, Icahn School of Medicine at Mount Sinai; Jennifer R Wiseman, Icahn School of Medicine at Mount 
Sinai; Elizabeth Zharovsky, Icahn School of Medicine at Mount Sinai; Rivka Jacobov, Icahn School of Medicine at Mount Sinai; Olivia Devillers, Icahn School of Medicine at Mount Sinai; Elie Flatow, Icahn School of Medicine at Mount Sinai; 
Gabriel E Hoffman, Icahn School of Medicine at Mount Sinai; Barbara K Lipska, Human Brain Collection Core, National Institutes of Health, Bethesda, MD; David A Lewis, University of Pittsburgh; Vahram Haroutunian, Icahn School of Medicine 
at Mount Sinai and James J Peters VA Medical Center; Chang-Gyu Hahn, University of Pennsylvania; Alexander W Charney, Mount Sinai; Stella Dracheva, Mount Sinai; Alexey Kozlenkov, Mount Sinai; Judson Belmont, Icahn School of 
Medicine at Mount Sinai; Diane DelValle, Icahn School of Medicine at Mount Sinai; Nancy Francoeur, Icahn School of Medicine at Mount Sinai; Evi Hadjimichael, Icahn School of Medicine at Mount Sinai; Dalila Pinto, Icahn School of Medicine at 
Mount Sinai; Harm van Bakel, Icahn School of Medicine at Mount Sinai; Panos Roussos, Mount Sinai; John F Fullard, Mount Sinai; Jaroslav Bendl, Mount Sinai; Mads E Hauberg, Mount Sinai; Lara M Mangravite, Sage Bionetworks; Mette A 
Peters, Sage Bionetworks; Yooree Chae, Sage Bionetworks; Junmin Peng, St. Jude Children's Hospital; Mingming Niu, St. Jude Children's Hospital; Xusheng Wang, St. Jude Children's Hospital; Maree J Webster, Stanley Medical Research 
Institute; Thomas G Beach, Banner Sun Health Research Institute; Chao Chen, Central South University; Yi Jiang, Central South University; Rujia Dai, Central South University; Annie W Shieh, SUNY Upstate Medical University; Chunyu Liu, 
SUNY Upstate Medical University; Kay S. Grennan, SUNY Upstate Medical University; Yan Xia, SUNY Upstate Medical University/Central South University; Ramu Vadukapuram, SUNY Upstate Medical University; Yongjun Wang, Central South 
University; Dominic Fitzgerald, The University of Chicago; Lijun Cheng, The University of Chicago; Miguel Brown, The University of Chicago; Mimi Brown, The University of Chicago; Tonya Brunetti, The University of Chicago; Thomas 
Goodman, The University of Chicago; Majd Alsayed, The University of Chicago; Michael J Gandal, University of California, Los Angeles; Daniel H Geschwind, University of California, Los Angeles; Hyejung Won, University of California, Los 
Angeles; Damon Polioudakis, University of California, Los Angeles; Brie Wamsley, University of California, Los Angeles; Jiani Yin, University of California, Los Angeles; Tarik Hadzic, University of California, Los Angeles; Luis De La Torre 
Ubieta, UCLA; Vivek Swarup, University of California, Los Angeles; Stephan J Sanders, University of California, San Francisco; Matthew W State, University of California, San Francisco; Donna M Werling, University of California, San 
Francisco; Joon-Yong An, University of California, San Francisco; Brooke Sheppard, University of California, San Francisco; A Jeremy Willsey, University of California, San Francisco; Kevin P White, The University of Chicago; Mohana Ray, 
The University of Chicago; Gina Giase, SUNY Upstate Medical University; Amira Kefi, University of Illinois at Chicago; Eugenio Mattei, University of Massachusetts Medical School; Michael Purcaro, University of Massachusetts Medical 
School; Zhiping Weng, University of Massachusetts Medical School; Jill Moore, University of Massachusetts Medical School; Henry Pratt, University of Massachusetts Medical School; Jack Huey, University of Massachusetts Medical School; 
Tyler Borrman, University of Massachusetts Medical School; Patrick F Sullivan, University of North Carolina - Chapel Hill; Paola Giusti-Rodriguez, University of North Carolina - Chapel Hill; Yunjung Kim, University of North Carolina - Chapel 
Hill; Patrick Sullivan, University of North Carolina - Chapel Hill; Jin Szatkiewicz, University of North Carolina - Chapel Hill; Suhn Kyong Rhie, University of Southern California; Christoper Armoskus, University of Southern California; Adrian 
Camarena, University of Southern California; Peggy J Farnham, University of Southern California; Valeria N Spitsyna, University of Southern California; Heather Witt, University of Southern California; Shannon Schreiner, University of 
Southern California; Oleg V Evgrafov, SUNY Downstate Medical Center; James A Knowles, SUNY Downstate Medical Center; Mark Gerstein, Yale University; Shuang Liu, Yale University; Daifeng Wang, Stony Brook University; Fabio C. P. 
Navarro, Yale University; Jonathan Warrell, Yale University; Declan Clarke, Yale University; Prashant S. Emani, Yale University; Mengting Gu, Yale University; Xu Shi, Yale University; Min Xu, Yale University; Yucheng T. Yang, Yale University; 
Robert R. Kitchen, Yale University; Gamze Gürsoy, Yale University; Jing Zhang, Yale University; Becky C Carlyle, Yale University; Angus C Nairn, Yale University; Mingfeng Li, Yale University; Sirisha Pochareddy, Yale University; Nenad 
Sestan, Yale University; Mario Skarica, Yale University; Zhen Li, Yale University; Andre M.M. Sousa, Yale University; Gabriel Santpere, Yale University; Jinmyung Choi, Yale University; Ying Zhu, Yale University; Tianliuyun Gao, Yale 
University; Daniel J Miller, Yale University; Adriana Cherskov, Yale University; Mo Yang, Yale University; Anahita Amiri, Yale University; Gianfilippo Coppola, Yale University; Jessica Mariani, Yale University; Soraya Scuderi, Yale University; 
Anna Szekely, Yale University; Flora M Vaccarino, Yale University; Feinan Wu, Yale University; Sherman Weissman, Yale University; Tanmoy Roychowdhury, Mayo Clinic Rochester; Alexej Abyzov, Mayo Clinic Rochester;.

“Adult Capstone” Team – 1 of 3 capstones

Daifeng Wang, Shuang Liu, Jonathan Warrell, Hyejung
Won, Xu Shi, Fabio Navarro, Declan Clarke, Mengting Gu, 
Prashant Emani, Yucheng T. Yang, Min Xu, Michael Gandal, Shaoke Lou, Jing 
Zhang, Jonathan J. Park, Chengfei Yan, Suhn Kyong Rhie, Kasidet
Manakongtreecheep, Holly Zhou, Aparna Nathan, Mette Peters, Eugenio Mattei, 
Dominic Fitzgerald, Tonya Brunetti, Jill Moore, Yan Jiang, Kiran Girdhar, Gabriel 
Hoffman, Selim Kalayci, Zeynep Hulya Gumus, Greg Crawford,
PsychENCODE Consortium,
Panos Roussos, Schahram Akbarian, Andrew E. Jaffe, Kevin White, Zhiping Weng, 
Nenad Sestan, 
Daniel H. Geschwind, James A. Knowles, Mark Gerstein
Dedicated to Pamela Sklar
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Developmental Capstone

• M Li, G Santpere, Y Imamura Kawasawa, 
OV Evgrafov, FO Gulden, S Pochareddy, 
SM Sunkin, Z Li, Y Shin,

Y Zhu, AMM Sousa, DM Werling, RR Kitchen, HJ Kang, M Pletikos, J Choi, S Muchnik, X Xu, 
D Wang, B Lorente-Galdos, S Liu, P Giusti-Rodriguez, H Won, CA de Leeuw, AF Pardinas, 
BrainSpan Consortium, 
PsychENCODE Consortium, PsychENCODE Developmental Subgroup, 
M Hu, F Jin, Y Li, MJ Owen, MC O'Donovan, JTR Walters, D Posthuma, MA Reimers, P 
Levitt, DR Weinberger, TM Hyde, JE Kleinman, DH Geschwind, MJ Hawrylycz, MW State, SJ 

Sanders, PF Sullivan,

ES Lein, JA Knowles, N Sestan

psychencode.org



6
2

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

GenoDock.molmovdb.org

B Wang, C Yan, 
S Lou, P Emani, B Li, M Xu, X Kong, W Meyerson, Y Yang, D Lee

See

JOBS.gersteinlab.org
Hiring Postdocs
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Extra
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Info about content in this slide pack
• General PERMISSIONS
-This Presentation is copyright Mark Gerstein, 

Yale University, 2019. 
-Please read permissions statement at 

www.gersteinlab.org/misc/permissions.html .
- Feel free to use slides & images in the talk with PROPER acknowledgement 

(via citation to relevant papers or link to gersteinlab.org). 
- Paper references in the talk were mostly from Papers.GersteinLab.org. 

• PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and 
clipped images in this presentation see http://streams.gerstein.info . 
- In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can be 

easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt


