Analysis of Personal Genomes:
- , e -
Results of the PsychENCODE consortlum on using population-scale
functional genomics to undefi'stand neuropsychiatric disease

& prlvacy aspects of this type of study

S o Slldes freely downloadable
M Gerstein, Yale from Lectures.GersteinLab.org
(See last slide for more info.) & “tweetable” (via @MarkGerstein)



TranSCFIptome = Gene Activity of All Genes in the Genome,
usually quantified by RNA-seq
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Proteins ATCACACTCCCACTCCATAAATTTTICT
CGAAGGACCAGCAGAAACGAGAGEEEYY Short sequence reads

GGACAGAGTCCCCAGCGGGCTGAAGGGG
ATCGARACATTAAAGTCAAACAATATCAA

[ NATURE 459: 927; NAT. REV. GEN. 10: 57 ]
Expression of genes is quantified by transcription:

RNA-Seq measures mRNA transcript amounts



Successive steps of
Data Reduction

Fastg sequence files
~5-10 GB

BAM files
~1-2-fold reduction

BigWig files
~25-fold reduction

Mapping
to genes

Gene/Transcript
expression matrix
~20-fold reduction

RNA-Seq Overview

ATACAAGCAAGTATAAGTTCGTATGCCGTCTT
GGAGGCTGGAGTTGGGGACGTATGCGGCATAG
TACCGATCGAGTCGACTGTAAACGTAGGCATA
ATTCTGACTGGTGTCATGCTGATGTACTTAAA

Index-building + Alignment to reference genome

Conversion to signal track by overlapping reads <«----------------------

_____

__ Base-resolution expression profile
2
c n
'% \ L\f'\ 1" f\l | \( \( ‘UV‘N\
= ] W
:
Nucleotide position

Overlap
identification

Overlap profile

Quantitative information from RNA-seq signal:

average signals at exon level (RPKMs)

Reads => Signal

[NAT. REV. 10: 57; PLOS CB 4:e1000158; PNAS 4:107: 5254 ]
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* RNA Seq. gives rise to activity patterns
of genes & regions in the genome




Some Core Science Qs Addressed by RNA-seq

« Gene activity as a function of:

- Developmental stage: basic patterns of co-active genes across
development

- Cell-type & Tissue: relationship to specialized functions

— Evolutionary relationships: behavior preserved across a wide
range of organisms; patterns in model organisms in relation to
those in humans

- Individual, across the human population
- Disease phenotypes: disruption of patterns in disease

« Some overarching Qs:
Are there core patterns of gene activity ?
How do they vary across individual ?
Are they disrupted by disease?



Studying large-scale transcriptome data
also produces

Data Exhaust

Metadata

Front End Back end
Core scientific Data collection and Data Exhaust
purposes analysis

Data on
Collaboration,

publication and
Infrastructure

« Data Exhaust = Exploitable byproducts of big data
collection and analysis

« Creative use of Data is key to Data Science !

[PHOTO: RELAXNEWS; from http://www.lapresse.ca]
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Results of the PsychENCODE consortium on using population-scale functional genomics to
understand neuropsychiatric disease & privacy aspects of this type of study

» [Core] PsychENCODE: » [Exhaust] Privacy & RNA-seq
Population-level analysis of functional genomics  _ |ntroduction to Genomic Privacy

data related to mental illness « The dilemma: The genome as

— Consortium intro & construction of an adult fundamental, inherited info
brain resource w/ 1866 individuals & full that's very private v. need for
developmental time-course large-scale mining for med.

- Using the changing proportions of cell types research
(via single-cell deconvolution) to account « 2-sided nature of functional
for expression variation across a population, genomics data presents
disorders & development particularly tricky privacy issues

- Generation of a large QTL resource - eQTLs: Quantifying & removing
(~2.5M eQTLs + cQTLs & fQTLs) further variant info from expression

- Brain regulatory network construction using levels w/ ICI & predictability.

QTLs, Hi-C & activity relationships + defining Instantiating a practical linking
~79K PFC enhancers. Using this to link SCZ attack w/ noisy quasi-identifiers

GWAS SNPs to genes. - Signal Profiles: Manifest

- Embedding the reg. network in a appreciable leakage from large &
deep-learning model (DSPN) to predict small deletions. Linking attacks
psychiatric disease from genotype & possible but additional complication
transcriptome. Using this to prioritize of SV discovery in addition to

particular pathways & genes. genotyping



Results of the PsychENCODE consortium on using population-scale functional genomics to
understand neuropsychiatric disease & privacy aspects of this type of study

« /Core/ PsychENCODE: « [Exhavsi] Privacy & ENA-seq
Population-level analysis of functional genomics  _ |ntroduction to Genomic Privacy

data related to mental illness « The dilemma: The genome as

— Consortium intro & construction of an adult fundamental, inherited info
brain resource w/ 1866 individuals & full that’s very private v. need for
developmental time-course large-scale mining for med.

- Using the changing proportions of cell types research
(via single-cell deconvolution) (0 account « 2-sided nature of functional
for expression variation across a population, genomics data presents
disorders & development particularly tricky privacy issues

~ Generation ot a large QTL resource - eQTLs: Quantifying & removing
(~2.5M eQTLs + cQTLs & fQTLs) further variant info from expression

- Brain regulatory network consiruction using levels w/ ICI & predictability.

QTLs, Hi-C & activity relationships + defining Instantiating a practical linking
~79K PFC enhancers. Using this to link SCZ attack w/ noisy quasi-identifiers

GWAS SNPs to genes. - Signal Profiles |/lanifest

- Embedding the reg. network in a appreciable leakage from large &
deep-learning model (USSP 1o predict small deletions. Linking attacks
psychiatric disease from genotype & possible but additional complication
transcriptome. Using this to prioritize of SV discovery in addition to

particular pathways & genes. genotyping



Sample Sources: >2,500 brains

Cross-disorder: ASD, SCZ, BP, Bulk Tissue
Neurodevelopmental, Neurotypical -

Dorsolateral

Multi-omic analysis
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{ Orbitofrontal %%% %% %% %%
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4 Subgenual
: Amygdalapnterior . ,
& Striatum Cingulate Limited Single cell
Cerebellum | Cortex 000000
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Genome:
WGS, genotype

Epigenome:
ChiP-seq, ATAC-
seq, HiC, ERRBS,

/A 7\ %/ Array Methylation,

NOMeSeq

Transcriptome:
RNA-seq,
IncRNAseq,

Proteome:
MWP, LC-MS/MS

Data Coordination/Analysis Center - Uniformly processed data across disorders and
developmental time periods!

Need for buman genome n
e e e cidng conscams 535

Smence PsychENCODE 18
. rollout in Science

Medicine

AYAAAS

11 papers in total.
Major material in the 3 capstones:

Wang et al. (‘18), Li et al. (‘18), Gandal et al. ('18)
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A core issue addressed by PsychENCODE:

Using functional genomics to reveal molecular mechanisms

between genotype and phenotype in brain disorders

Disease Heritability™ Molecular Mechanisms o
o | e, Phenotype
Schizophrenia 81% (C4A)
Bipolar disorder 70% |-
Alzheimer's disease |58 - 79% Apolipoprotein E (APOE), Tau }
pathways,
30% Renin—angiotensin—aldosterone circuits
34-53% Atherosclerosis, VCAM-1 Cell types o10]
Stroke 32% Reactive oxygen species (ROS), ReauTatpET
Ischemia elements Genes
Type-2 diabetes 26% Insulin resistance
25-56% BRCA, PTEN N Genotype 7

Many psychiatric conditions are highly heritable
Schizophrenia: up to 80%
But we don’t understand basic molecular mechanisms underpinning this association
(in contrast to many other diseases such as cancer & heart disease)
Moreover, current models substantially underestimate heritability using genetic data
Schizophrenia : ~25%
Thus, interested in developing predictive models of psychiatric traits which:
Use observations at intermediate (molecular levels) levels to inform latent structure
Use the predictive features of these “molecular endo phenotypes” to begin to suggest actors
involved in mechanism

*https://www.snpedia.com/index.php/Heritability

10 =



Developmental Capstone Data Set

PCW 5 9 12 15 v y
6;‘,,.\ » P} w} l.a @ @
Conception j Embfyonic Fetal development Bil'th Infancy Childhood Adolescence Adulthood
1 i i L) ] i
iod 1 § 4 5 6 ! i 9 | 10 § 0 15

(after Ke al)

2 8 R LU | LIl

Age (PCW/PY) 56 12 1316171819202122 35 37 0 02503 05 08 1 2 25 28 4 8 8.3 107 13 1518 19 21 23 30 36 37 40 64
Window (W) W w2 wa wa Ws . We . w7 ws Wo '
B Genotyping OO ©@ O Q@O 000 O@O OO 00O O OO0 O OO OCOOCO O WO O
mRNA-seq OO0 @ OO oo OO0 @O OO0 00O O OO0 O OO OO O OO
small RNA-seq @O OO 00O O OO0 O OO OO O 000
DNA methylation OO0 OO OO0 O OO0 OO0 OO O OO
Histone modifications OO0 O o 0O O O O
Single cell RNA-seq OO © O 000
Single nucleus RNA-seq O O O

* 60 Individuals in total
« Ages from 5 PCW to 64 yrs.

* 16 brain regions for > 9 PCW
[Li et al. (“18) Science]
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~3.7K bulk RNA-seq
~32K single-cells

Disorder

Tissue

Disorder

[Wang et al. (‘18) Science]



Sample archived brain tissues
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[Lietal. (“18), Science. Wang et al. (‘18). Science]
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Single-cell
deconvolution
Step 1:

Unsupervised

learning to determine
relevant cell types

* ~14K cells
(Lake et al.,"16 & 18)

* ~400 cells
(Darmanis et al., PNAS, ‘15)

» ~18K cells (PsychENCODE)

All genes (~20K)

1866 individuals

Bulk
expression

(B)

Unsupervised
decomposition
(NMF)

~

25 top components

All genes

NMF
comp

V)

H = 113
7
E IR R eE L 2YET 0825852828343
Wwwoooow-=======2= .Eoc‘ﬁ:=‘ﬁc%.2u'§c“c’
s UWgOO<gu =l
L J L J 1 L J
Excitatory Neuron Inhibitory Neuron NonNeuron NonNeuron Neuron
L L

Adult

Developmental

[Wang et al. (‘18) Science]

25 top components

sjusuodwod doy 4NN

1866 individuals

NMF comp
fractions

(H)

0.6

0.4

0.2

-0.2

-0.4

Pearson correlation

-0.6
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24 selected cell types
(Neuronal, NonNeuronal, Developmental)
1866 individuals

. o 1866 individuals
Single-cell < . g-

. N Bulk D lution @ =
deco nVOI utlon é’ expression eco;‘lo Hen E’.‘ X § _
Step 2: s (B) < &

p " P g Cell fractions (W)
<
Single cell expression (C) N
Supervised

learning to
estimate cell

fractions /|B| > 88% 4%

Standardized gene expression
o

Individual and cross-population
reconstruction accuracy via
deconvolution

[Wang et al. (‘18) Science]
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Different neuronal & glial cell
fractions across disorders

Ex5 In6 Oligo
. |
3 cm g S R e T e S— —
= SCZ, :[ e N B — . I —
8 BPD -*:[ 1 — T — * ———
S AsD L e e O
0 0.1 0 0.02 0 0.2

Cell fractions

Excitatory to Inhibitory imbalance at
neuronal subtype level for ASD*

* Rubenstein et al., Model of autism: increased ratio of excitation/inhibition in key neural systems, Genes Brain
Behav. 2003

[Wang et al. (‘18) Science]
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Different neuronal & glial cell

fractions across ages

W1 w2 W3W4 W5 W6 W7 W8 W9
| I :
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[Li et al. (“18) Science]
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Results of the PsychENCODE consortium on using population-scale functional genomics to
understand neuropsychiatric disease & privacy aspects of this type of study

« /Core/ PsychENCODE: « [Exhavsi] Privacy & ENA-seq
Population-level analysis of functional genomics  _ |ntroduction to Genomic Privacy

data related to mental illness « The dilemma: The genome as

— Consortium intro & construction of an adult fundamental, inherited info
brain resource w/ 1866 individuals & full that’s very private v. need for
developmental time-course large-scale mining for med.

- Using the changing proportions of cell types research
(via single-cell deconvolution) (0 account « 2-sided nature of functional
for expression variation across a population, genomics data presents
disorders & development particularly tricky privacy issues

~ Generation ot a large QTL resource - eQTLs: Quantifying & removing
(~2.5M eQTLs + cQTLs & fQTLs) further variant info from expression

- Brain regulatory network consiruction using levels w/ ICI & predictability.

QTLs, Hi-C & activity relationships + defining Instantiating a practical linking
~79K PFC enhancers. Using this to link SCZ attack w/ noisy quasi-identifiers

GWAS SNPs to genes. - Signal Profiles |/lanifest

- Embedding the reg. network in a appreciable leakage from large &
deep-learning model (USSP 1o predict small deletions. Linking attacks
psychiatric disease from genotype & possible but additional complication
transcriptome. Using this to prioritize of SV discovery in addition to

particular pathways & genes. genotyping



Reference Brain

Cohort H3K27ac peaks

Developing a Reference Set of ~79K PFC Enhancers
& Studying Their Population Variation

Chr1 15,265 kb 15,270 kb 15,275 kb 15,280 kb
1 1 1 1 1 1 1
Enhancers - -
ATAC-seq ot stemen s M Bos o o0 niihibn e cnn .
Reference Brain
H3K4me3 79056 enhancers
H3K27ac MM . - -
Peaks track [r——
1 e
R
————
L

Average
overlap
54k + 12k

20

—-I
30 | e
-

Individual

40

50

[Wang et al. (‘18) Science]

from cohort
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Consistently
- " " 0.2— s
Comparing Variation | J T
. . ’ c
in Chromatin & 01— =
Expression TR 5
a ‘ o = E ". o
LA S
Placing the PP | ol
Brain | &%
in context of all other 02|
Body Tissues |
-0.5 -0.25 0 0.25 0.5
PC1
E F
1 | : 1—
?Brains ) g
0 o g
Qo
3 3 5
a o X
-1 -1 mn
2 1 0 1 2 -2 1 0 1 2
PCA1 PCA1 [Wang et al. (“18) Science]
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Chromatin variation in the population

Quantitaive Trait Loci (QTL) associated with variations

Gene expression (eQTL) Chromatin (cQTL)
Sample 1: genotype CC
C _= 3
s sesse . G AMK2N1
EH37E0074243 EH37E0074249
C Az ¥ e e

| _&@Mb . R

Sample 2: genotype CG _(fl_\\-A—‘M—“.-—
C A G ,\_._‘__.“._A‘_‘L

G > _A’B-AM_A‘_L

rs112660177
o -
& .
@

c o
§ Q&1 T Number of
g o ' ; intermediate phenotype SNPs
@ D . —
o v ‘
= g E; & eQTL 32,944 eGenes 1,341,182
e T —~ | |

S cQTL* 8,484 Enhancers 7,983

| | 21
cC CG GG [Wang et al. (“18) Science]

Sun, Wei, and Yijuan Hu. "eQTL mapping using RNA-seq data." Statistics in biosciences 5.1

(2013): 198-219.



Cell fraction QTLs (fQTLs)
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[Wang et al. (‘18) Science]
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Larger Brain eQTL sets than previous studies

Number of eGenes

GWAS enrichment

PsychENCODE all eGenes @

30000 A 2,542,908 eQTLs (FDR< 0.05)
25000 A
20000 A
PsychENCODE coding eGenes
B TV ®
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10000 - e
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BrainCloud —____--- -7 my=093 - - - -~
5000 1 @GTEX BA9
1 1 1 1 1 1
200 400 600 800 1000 1200 1400
Sample Size

...--————--—————-——-
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T T T T T T T T T T
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F Intelligence
Alzheimer
Parkinson
T2D
CAD
IBD

75

50 25
-log10 FDR

0

[Wang et al. (‘18) Science]
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eQTL

Numbers eGenes
of Enhancers
QTLs Cell types
32,944
isoQTL | 2,628,259 @ 19 790
cQTL* 8,464 8,484
fQTL 4,199 9

m o mE

isoQTL

cQTL
fQTL

v

eQTLs and cQTLs
significantly
overlap

multi-QTLs from overlapping
different types of QTLs:

SNPs

1,341,182
1,052,939
7,983
1,672

\_Y_/
1391 SNPs (multi-QTLSs)
in at least three types
among eQTLs, isoQTLs,
cQTLs, fQTLs
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® [ ]
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11.2 mb 11.83mb

[Wang et al. (‘18) Science]
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Convergence of risk for brain disorders (SCZ) on discrete co-
expression modules (often prenatally expressed) and cell types.

Cell types DNAm Enhancers GWAS
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Mingfeng Li et al. Science 2018;362: eaat7615
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Results of the PsychENCODE consortium on using population-scale functional genomics to
understand neuropsychiatric disease & privacy aspects of this type of study

« /Core/ PsychENCODE: « [Exhavsi] Privacy & ENA-seq
Population-level analysis of functional genomics  _ |ntroduction to Genomic Privacy

data related to mental illness « The dilemma: The genome as

— Consortium intro & construction of an adult fundamental, inherited info
brain resource w/ 1866 individuals & full that’s very private v. need for
developmental time-course large-scale mining for med.

- Using the changing proportions of cell types research
(via single-cell deconvolution) (0 account « 2-sided nature of functional
for expression variation across a population, genomics data presents
disorders & development particularly tricky privacy issues

~ Generation ot a large QTL resource - eQTLs: Quantifying & removing
(~2.5M eQTLs + cQTLs & fQTLs) further variant info from expression

- Brain regulatory network consiruction using levels w/ ICI & predictability.

QTLs, Hi-C & activity relationships + defining Instantiating a practical linking
~79K PFC enhancers. Using this to link SCZ attack w/ noisy quasi-identifiers

GWAS SNPs to genes. - Signal Profiles |/lanifest

- Embedding the reg. network in a appreciable leakage from large &
deep-learning model (USSP 1o predict small deletions. Linking attacks
psychiatric disease from genotype & possible but additional complication
transcriptome. Using this to prioritize of SV discovery in addition to

particular pathways & genes. genotyping



Deep Structured Phenotype Network
(DSPN)

Boltzmann machine

s ® 3 |@®e™ y: phenotypes
ene 7 -
regulatory ‘ e P12 hidden units (e.g., circuits)
network —
. XX IBCX X : intermediate phenotypes
:::I(:fon see see S (e.g., genes, enhancers)
el zigenotypes (e.g., SNPs)

Energy
model: W: weights

S e.g., regulatory network
p(x' y, hlZ) & exp(_E(X’ y hlZ)) [ o reguator;} ( g g ry )

E(x,v,h|z) = —zTWyx —xT Wy x — xTW3h — hTW,h — hTWsy — Bias
|

[Wang et al. (“18) Science] a



LR cRBM DSPN

L3
(output)
DSPN improves brain ”
n - - (hidden)
disease prediction by
adding deep layers .
(visible or
imputed) : b § L1a/b
Lo
(conditioning)
Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full
Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%
Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%
Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

X 6.0
Accuracy = chance to correctly predict disease/health

[Wang et al. (‘18) Science]
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LR cRBM DSPN

L3
(output)
DSPN improves brain ”
n - - (hidden)
disease prediction by
adding deep layers .
(visible or
imputed) : b § L1a/b
Lo
(conditioning)
Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full
Schizophrenia 54 .6% 63.0% 70.0% 59.0% 73.6%
Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%
Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

X25
Accuracy = chance to correctly predict disease/health

[Wang et al. (‘18) Science]
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LR cRBM DSPN

L3
(output)
DSPN improves brain ”
n - - (hidden)
disease prediction by
adding deep layers .
(visible or
imputed) : b § L1a/b
Lo
(conditioning)
Method LR-genotype LR-transcriptome cRBM DSPN-imputation DSPN-full
Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%
Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%
Autism Spectrum Disorder 50.0% 51.7% 67.2% 62.5% 68.3%

X 3.1
Accuracy = chance to correctly predict disease/health

[Wang et al. (‘18) Science]
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[ — | o

SCZ

DSPN discovers molecular pathways
from genotype to phenotype

Ranking score Functional categories

RNA proc. (~) Immune
50 100 >200 (>) Synaptic (#) Metabolic
BPD ASD
(*) spliceosome / RNA splicing
(>)

Synaptic vesicle cycle

Antigen proc. and presentation
Vesicle localization
Proteasome

mRNA processing

Chromatin modification
Oxidative phosphorylation
Retrograde endocannabinoid sig.
Chemical synaptic transmission
Peptidyl-lysine modification
Endocytosis

Ubiquitin mediated proteolysis
Anterograde trans-synaptic sig.
mRNA transport
Phosphatidylinositol signaling
Hippo signaling pathway
Staph./ Epstein-Barr virus inf.
Synaptic signaling

Autophagy

(>) Dop./GABA/Glutamatergic synapse
(>) calcium signaling

(#) Endocrine calcium reabsorption
(*) RNA degradation / transport

(#) Ribosome

Neuron projection morphogenesis
Fc receptor signaling pathway
cGMP-PKG signaling pathway
mTOR signaling pathway
Cytokine-cytokine receptor int.

L2

Gap junction

@ BPD Asp) (AGE

(>) Synaptic vesicle cycle
(>) Glutamatergic synapse
Ex1, Ex4, Ex6 neurons

AGE

@ BPD ASD

Ex6 neurons
Astrocytes

Mineral absorption
Calcium signaling

(~) Complement
cascade

Cell Fractions

Co-expr. mods
Q {1d

L1 —

énhancers Genes
LO SNPs| GRINL
2 SNPs

EH37E0947082
\/
1 SNP//@

/ CLU )
C4B

C4A

1 SNP

[Wang et al. (‘18) Science]
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Thoughts on Missing Heritability,
Polygenic Risk Scores & Our Model

Many psychiatric conditions are
highly heritable
— Schizophrenia: up to 80% (family
studies)
Psychiatric traits appear to be
highly polygenic
- PRSs typically use an additive model
to predict genetic risk; space of
possible epistatic models is vast and
requires huge sample sizes for unique
identification
However, Common SNPs only
explain ~25% heritability
Possible explanations:
— Significant (additive) contribution
of rare SNPs

- Important roles for epistasis and
gene-environment interactions

 We circumvent this
problem:

- Use observations at
intermediate levels
(molecular
endophenotypes) to
inform latent structure

- Use a deep-learning
framework for
optimization; proven
capacity to learn
complex predictors which
generalize

 Epistatic interactions in our
model are implicit: develop
model interpretation
methods to suggest actors
involved in mechanism

[Wang et al. (“18) Science] a



Review of the Phase 1 PsychENCODE capstone resource:
Layers of distributed information

Material in the 3 capstones:

AC - Wang et al. ("18)
DC - Li et al. ("18)
NC - Gandal et al. ('18)
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Results of the PsychENCODE consortium on using population-scale functional genomics to
understand neuropsychiatric disease & privacy aspects of this type of study

« /Core/ PsychENCODE: « [Exhavsi] Privacy & ENA-seq
Population-level analysis of functional genomics  _ |ntroduction to Genomic Privacy

data related to mental illness « The dilemma: The genome as

— Consortium intro & construction of an adult fundamental, inherited info
brain resource w/ 1866 individuals & full that’s very private v. need for
developmental time-course large-scale mining for med.

- Using the changing proportions of cell types research
(via single-cell deconvolution) (0 account « 2-sided nature of functional
for expression variation across a population, genomics data presents
disorders & development particularly tricky privacy issues

~ Generation ot a large QTL resource - eQTLs: Quantifying & removing
(~2.5M eQTLs + cQTLs & fQTLs) further variant info from expression

- Brain regulatory network consiruction using levels w/ ICI & predictability.

QTLs, Hi-C & activity relationships + defining Instantiating a practical linking
~79K PFC enhancers. Using this to link SCZ attack w/ noisy quasi-identifiers

GWAS SNPs to genes. - Signal Profiles |/lanifest

- Embedding the reg. network in a appreciable leakage from large &
deep-learning model (USSP 1o predict small deletions. Linking attacks
psychiatric disease from genotype & possible but additional complication
transcriptome. Using this to prioritize of SV discovery in addition to

particular pathways & genes. genotyping



2-sided nature of functional
genomics data: Analysis can be
very General/Public
or Individual/Private

* General quantifications related to overall aspects
of a condition — ie gene activity as a function of:

- Developmental stage, Evolutionary relationships, Cell-type, Disease

 Above are not tied to an individual’s genotype. However, data is
derived from individuals & tagged with their genotypes

* (Note, a few calculations aim to use explicitly genotype to derive general
relations related to sequence variation & gene expression - eg allelic activity)
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Genomics has similar u @ flickr
"Big Data™ Dilemma in

the Rest of Society a 5. B

» Sharing & "peer- ! "s0@ | .

production” is central to % m

success of many new
ventures, with the same

risks as in genomics

- EG web search: Large-
scale mining essential

* We confront privacy
risks every day we
access the internet
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Tricky Privacy Considerations in Personal Genomics

* Genetic .
Exceptionalism :
The Genome is very
fundamental data,
potentially very
revealing about one’s
identity & .
characteristics
* Personal Genomic
info. essentially
meaningless
currently but will it
be in 20 yrs? 50 yrs?
- Genomic sequence
very revealing about

one’s childrer]. Is true
consent possible?

— Once put on the web
it can’t be taken back

Culture Clash:

Genomics historically has been a
proponent of “open data” but not clear
personal genomics fits this.

— Clinical Medline has a very different
culture.

Ethically challenged history of genetics

- Ownership of the data & what consent
means (Hela)

« Could your genetic data give rise to a
product line?

[D Greenbaum & M Gerstein ('08). Am J. Bioethics; D Greenbaum & M Gerstein, Hartford Courant, 10 Jul. '08 ; SF Chronicle, 2 Nov. '08;
Greenbaum et al. PLOS CB (‘11) ; Greenbaum & Gerstein ('13), The Scientist; Photo from NY Times]
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The Other Side of the Coin:
Why we should share

« Sharing helps speed research

- Large-scale mining of this information is
important for medical research

- Privacy is cumbersome, particularly for big
data

« Sharing is important for reproducible research
« Sharing is useful for education

— More fun to study a known person’s genome
« Eg Zimmer's Game of Genomes in STAT

CARLZIMMER'S

GAMEOF GENOMES

SEASON |

Robert Munsch

We Share

EVERYTHING!

ilustrated by Michael Martchenko

[Yale Law Roundtable (‘10). Comp. in Sci. &
Eng. 12:8; D Greenbaum & M Gerstein (‘09).
Am. J. Bioethics; D Greenbaum & M Gerstein
(“10). SF Chronicle, May 2, Page E-4;
Greenbaum et al. PLOS CB (‘11)]




The Dilemma

Dawd Parkins

[Economist, 15 Aug ‘15]

« The individual (harmed?) v the collective (benefits)
— But do sick patients care about their privacy?
« How to balance risks v rewards - Quantification

- What is acceptable risk?
Can we quantify leakage?
« EXx: photos of eye color

— Cost Benefit Analysis
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Current Social & Technical Solutions

* Closed Data Approach * Open Data
- Consents - Genomic "test pilots”
- “Protected” distribution via dbGAP (ala PGP)?
—- Local computes on secure computer | fglggfltfetzf,s &

* Issues with Closed Data

— Non-uniformity of consents & paperwork

 Different international norms, leading to
confusion

- Encryption & computer security creates
burdensome requirements on data
sharing & large scale analysis

- Many schemes get “hacked”

[Greenbuam et al ('04), Nat. Biotech; Greenbaum & Gerstein ('13), The Scientist]

- Some public data &
data donation is
helpful but is this a
realistic solution for
an unbiased sample
of ~1M
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Strawman Hybrid Social & Tech Proposed Solution?

 Fundamentally, researchers < Quantifying Leakage &
have to keep genetic secrets.  allowing a small amounts of it

- Need for an (international) « Careful separation & coupling

legal framework of private & public data

- Genetic Licensure & training - Lightweight, freely accessible
for individuals secondary datasets coupled
(si.milar to medical license, to underlying variants
drivers license) - Selection of stub & "test pilot"

* Technology to make things datasets for benchmarking
easier — Develop programs on public

— Cloud computing & enclaves stubs on your laptop, then move
(eg solution of Genomics the program to the cloud for
England) private production run

« Technological barriers
shouldn't create a social
incentive for “hacking”

[D Greenbaum, M Gerstein (‘11). Am J Bioeth 11:39. Greenbaum & Gerstein, The Scientist ('13)]
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Results of the PsychENCODE consortium on using population-scale functional genomics to
understand neuropsychiatric disease & privacy aspects of this type of study

« /Core/ PsychENCODE: « [Exhavsi] Privacy & ENA-seq
Population-level analysis of functional genomics  _ |ntroduction to Genomic Privacy

data related to mental illness « The dilemma: The genome as

— Consortium intro & construction of an adult fundamental, inherited info
brain resource w/ 1866 individuals & full that’s very private v. need for
developmental time-course large-scale mining for med.

- Using the changing proportions of cell types research
(via single-cell deconvolution) (0 account « 2-sided nature of functional
for expression variation across a population, genomics data presents
disorders & development particularly tricky privacy issues

~ Generation ot a large QTL resource - eQTLs: Quantifying & removing
(~2.5M eQTLs + cQTLs & fQTLs) further variant info from expression

- Brain regulatory network consiruction using levels w/ ICI & predictability.

QTLs, Hi-C & activity relationships + defining Instantiating a practical linking
~79K PFC enhancers. Using this to link SCZ attack w/ noisy quasi-identifiers

GWAS SNPs to genes. - Signal Profiles |/lanifest

- Embedding the reg. network in a appreciable leakage from large &
deep-learning model (USSP 1o predict small deletions. Linking attacks
psychiatric disease from genotype & possible but additional complication
transcriptome. Using this to prioritize of SV discovery in addition to

particular pathways & genes. genotyping



Representative Functional Genomics, Genotype,
eQTL Datasets

« Genotypes are available from the 1000 Genomes

Project

 MRNA sequencing for 462 individuals from geUVADIS
and ENCODE

- Publicly available quantification for protein coding
genes

* Functional genomics data (ChIP-Seq, RNA-Seq, Hi-C)
available from ENCODE

« Approximately 3,000 cis-eQTL (FDR<0.05)

acpw XY TR AN,
1000 G = 5 A
s W ofy ﬁ S . 7 I,
A Deep Catalog of Human Genetic Variation /V'lf ¥ ' /7 ";‘ S VAD ' S : / !
-‘7,')‘ o~ o * - :.’
N




(a) C A
Individual

)

(ii)

(iii)

[Biometrics 68(1) 1-11]

Frequency

EE eX0N | SNP

mmm— non-trascriped regions,

e.g., intron etc.

(b)

(c)

15

10

eQTL Mapping
Using RNA-Seq
Data

« eQTLs are genomic loci
that contribute to
variation in mRNA
expression levels

« eQTLs provide insights
on transcription
regulation, and the
molecular basis of
phenotypic outcomes

« eQTL mapping can be
done with RNA-Seq data
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Information Content and Predictability
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N
(lndi».iduamasuariam ) 1 1 1 \
gemtfpﬂs.fi'hﬂzu o — _
”C’ for variants Vi, Vi, .. Vs J log Frequency of +log Frequency of t o tlog Frequency of
V; genotype V; genotype I, genotype » Naive measure of information
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z \ z T z \ pop. struc., &c)
£l i z » Higher frequency: Lower ICI
z A - 5 e - .
£ k r » Additive for multiple variants
012 0112 0112
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Linking Attack Scenario

Phenotype dataset
(Public)

Genotype dataset
(Stolen/Hacked/Queried)

Phenotype-Genotype

" &’1' '6(\‘
correlation dataset & @ .
Phenotype 1 «—»Variant 1 1
Phenotype 2 «<—Variant 2
0

Phenotype g¢—®Variant g

Predicted/Matched genotypes
HIV O “q‘ &
| Status| @S o @
I Predicted variant e 496 i o
1
HIV Jenogres & HIV+ 0/0 1/1 - 151
statusl o o @
NN o HIV- 22 11 - o/
g8 HV+ 1 |0 2 Genotype comparison 1/0| 1/0 ... | 0/2
HIV- 2 | 2 1 and matching 2200 .. | 11
H o/1 1/1 ... | 221
PID-n  HIV- o 1 1

[Harmanciet al. Nat. Meth. (in revision)]
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Linking Attacks: Case of Netflix Prize

Names available for many users!

m Movie (ID) Date of Grade Grade [1,2,3,4,5] m Movie (ID) Date of Grade Grade [0-10]

NETELIN

NTFLX-0 NTAREAS 10/12/2008 IMDB-0 IMDB-173 4/20/2009 5
NTFLX-1 NTFLX-116 4123/2009 3 MDB1 MDB.18 10/18/2008 0
NTFLX-2 NTFLX-92 5/27/2010 2 MDB.2 IMDB.341 . )
NTFLX-1 NTFLX-666 6/6/2016 5

Many users are shared
The grades of same users are correlated
* A user grades one movie around the same date in two databases

Anonymized Netflix Prize Training Dataset
made available to contestants
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Linking Attacks: Case of Netflix Prize

Names available for many users!

m Movie (ID) Date of Grade Grade [1,2,3,4,5] m Movie (ID) Date of Grade Grade [0-10]

NTFLX-2 NTFLX-92 5/27/2010

IMDB-2 IMDB-341 5/27/2010 -
NTFLX-1 NTFLX-666 6/6/2016 5

* Many users are shared

* The grades of same users are correlated

* A user grades one movie around the same date in two databases
* IMDB users are public

* NetFLIX and IMdB moves are public
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Linking Attacks: Case of Netflix Prize

Names available for many users!

m Movie (ID) Date of Grade Grade [1,2,3,4,5] m Movie (ID) Date of Grade Grade [0-10]

NTFLX-2 NTFLX-92 5/27/2010

IMDB-2 IMDB-341 5/27/2010 -

Many users are shared
The grades of same users are correlated
* A user grades one movie around the same date in two databases
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Linking Attack Scenario

Phenotype dataset
(Public)

Genotype dataset
(Stolen/Hacked/Queried)

Phenotype-Genotype

" &’1' '6(\‘
correlation dataset & @ .
Phenotype 1 «—»Variant 1 1
Phenotype 2 «<—Variant 2
0

Phenotype g¢—®Variant g

Predicted/Matched genotypes
HIV O “q‘ &
| Status| @S o @
I Predicted variant e 496 i o
1
HIV ‘,fe"z,t,}’pes o HIV+ 0/0 1/1 - 151
Statusl o & o3
\\’b‘\% & » 0 HIV- | 22 1/1 - 0/0
g8 HV+ 1 |0 2 Genotype comparison 1/0| 1/0 ... | 0/2
HIV-| 2 | 2 | - 1 and matching 2200 .. | 11
n 0/1| 1/1| .. | 271
PID-n HIV- o 1 = 1

[Harmanciet al. Nat. Meth. (in revision)]
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Success in Linking Attack
with Extremity based Genotype Prediction

200 individuals eQTL Discovery
High 200 individuals in Linking Attack

Sensitivity
1.07

Genotypes Only

Genotypes + Gender

Genotypes + Population
Genotypes + Gender + Population

(=) o (=)
N o (o)
T T T

o
(M)

Fraction of Vulnerable Individuals

0.0

Low 0 110 2‘0 3‘0 4‘0
Sensitivity l Association Strength Threshold I
High Number Low Number
Of eQTLs Of eQTLs
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Fraction of Vulnerable Individuals

o g o o -
N > o (o) o
T T T T 1

o
o
o

Success in Linking Attack
with Extremity based Genotype Prediction

200 individuals eQTL Discovery
100,200 individuals in Linking Attack

200 individuals eQTL Discovery
200 individuals in Linking Attack

1.0¢
Genotypes Only
Genotypes + Gender w
\ Genotypes + Population g
\ Genotypes + Gender + Population © 0.8

\l >
2
L=

[0} i

S 0.6

o
Q
£

S 0.4+
N
(o]
c
.0

© 0.2+
o
L

4 . : 0.0 !
10 20 30 4 0 10 20 30

Association Strength Threshold Association Strength Threshold

=
o
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Results of the PsychENCODE consortium on using population-scale functional genomics to
understand neuropsychiatric disease & privacy aspects of this type of study

« /Core/ PsychENCODE: « [Exhavsi] Privacy & ENA-seq
Population-level analysis of functional genomics  _ |ntroduction to Genomic Privacy

data related to mental illness « The dilemma: The genome as

— Consortium intro & construction of an adult fundamental, inherited info
brain resource w/ 1866 individuals & full that’s very private v. need for
developmental time-course large-scale mining for med.

- Using the changing proportions of cell types research
(via single-cell deconvolution) (0 account « 2-sided nature of functional
for expression variation across a population, genomics data presents
disorders & development particularly tricky privacy issues

~ Generation ot a large QTL resource - eQTLs: Quantifying & removing
(~2.5M eQTLs + cQTLs & fQTLs) further variant info from expression

- Brain regulatory network consiruction using levels w/ ICI & predictability.

QTLs, Hi-C & activity relationships + defining Instantiating a practical linking
~79K PFC enhancers. Using this to link SCZ attack w/ noisy quasi-identifiers

GWAS SNPs to genes. - Signal Profiles |/lanifest

- Embedding the reg. network in a appreciable leakage from large &
deep-learning model (USSP 1o predict small deletions. Linking attacks
psychiatric disease from genotype & possible but additional complication
transcriptome. Using this to prioritize of SV discovery in addition to

particular pathways & genes. genotyping



Detection & Genotyping of small & large
SV deletions from signal profiles

Genomic

Coordinate ChIP-Seq
Signals

ACGTAC

Genomic
Coordinate

Large Deletion

Small Deletion

RNA-seq also shows large deletions
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Scale
chri:
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Repeatm asker

wholBlood F ><V7Q
0 16544

wholBlood F 13FT><
U 01045

wholBlood F 13V><T

0 1 2616
8763 _
wholBlood F NBMU

0 01221

wholBlood F 139D8
0 0604

wholBlood F 12WSJ
0.12361

Scale
chri:

B

PADIZ
PADIZ
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413609

wholBlood F XV7Q
0.16544
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wholBlood F 13FTX
3.3137 _
752765 _
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wholBlood F 138D8
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wholBlood F 12¥WSJ
219411

[Harmanci

Example of Small Deletion Evident in Signal Profile

500 hases} { hg19
| 17,393,400 | 17,393,500 17,393,600 | 17,383,700 | 7393 u ol 17,393, guul 1?,394,000\ 17,394,100 17,394,200 |
Simple Nucleotide Pol\émor hisms (db SNP 150) Found in == 1% of § am les
Pt rs2746533 |
151835351 7 rs350581011
rs340436251

UCSC Genes (RefSeq, GenBank CCDS. Rfam, tRNAs & Comparative Genomics;

Repeatj
GTEx RNA signal from female YWhole Blood (GTEX-KW7Q-0005-5M- 4BRWI)

w

GTEx RNA signal from female YWhole Blood (GTEX-13FTX-0005-5M-5NYF B)

| L et et

GTEx RNA signal from female Whole Bload (GTEX-13VXT-0005-SM-5NIF 3)

RO e ——— e NEEE

GTEx RNA signal from female YWhole Blood (GTEX-14BM I-0006-SM-6MR3T)

GTEx RNA signal from female Whole Blood (GTEi-i i YD B-0006-SM-5LZXE)

GTEx RNA signal from fermnale YWhole Blood (GTEX, -5LU8S)

ments hy RepeatMasker

e

AAAAAAE\ysg\ayRAAAAAE\?3%3£2£AGAAAAyS%BéBRLTAAA0(1}73%\3@RLI'TAA0673%\3

15719262 Simple Nucleotide Polvrrggrmggbss

51995339170
UCSC Genes‘RefSeH GenBank CC!

Repeating Elemd
GTEx RNA signal from female YWho

58 CACA 67_A3%3'168 IA CATGA
P 150) Found in »= 1% of Samples

'XRCTCTA&73$ESQCCAGA&T3%3£98ACCCTCAAA

am, tRNAS & Comparative Genomics)

ints iy Repeath asker

e Bidod (GTEX-KV7Q-0005-SM- 4BRWI)

GTEx RNA signal from fermale Who ﬂ pd (GTEX-13FTX-0005-5M -6NIFE)

GTEx RNA signal from female ¥YWho ﬁ pd (GTEX-13VXT-0005-SM-6NIF 3)
e

GTEx RNA signal from ferale Whal W d (GTEX-14BM U-0006-SM-SMR3T)

3 RINA signal from Temale Whioje Blgod A-13Y U0b-5h -5LEKE;

GTEx RNA signal from female Who ﬂl (GTEX-12/SJ-0005-SM-5LUES)
>

& Gerstein, Nat. Comm. (‘18)]
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Example of Large Deletion Evident in Signal Profile

- 94 kb >
| 248,730 kb 248,750 kb 248,770 kb 248,790 kb 248,810 kb |
[ |
H3K27ac . . ud  ods i, L. .
H3K36me3 ik .o o libdtnd .. 1 1 AT THAPIAY ET T BT
H3K4me! | oualbillt i bdhd woiir o o o anlh by L i,
H3K4me2 Ll jl_llhll [ Y - 1] ' 1
H3K4me3 | . M. ousuid. . L len

H3K79me2 g, ibke llnll b bbitiion sl i 2 o1
H3K9ac T Y

HIKIME3  \igan sittal s bt L bl
Pooled gl sl sin et vk (1 ia sl .

Large Deletion
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Information Leakage from SV Deletions

a)Before Anonymization b) After Anonymization

‘ * Real = Random!

1_“..:».:::
\ o

] * Real =* Random!

0 2 4 6 8 10 12 e ~
ICI Leakage (bits) 0 s 4 6 8 10 12

ICI Leakage (bits)

Simple anonymization procedure (filling in deletion by value at endpoints) has dramatic effect
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Another type of Linking Attack:
Linking based on SV Genotyping

Structural Variants Panel ( )
(Stolen/Legally Obtained) bg

,SV-1 SV-2 SV-3 .-.SV-N_ [4 SV-1 SV-b SV-3 - SV-I\L}
A \ . . 4 14
‘\ |' n‘ 4 < / II T “
' T T ’ ; \ Al [ ,
! \
\

SV Panel for Signal Profiles ()

\ \ 1, 4 ’ ]

Anonymized| g\/_ 1| Qy.2| SV-3| eee | SV-N |HIV Status

Sample ID Patient | gv.1|Svb| SV-3| eee | SV-N
0 0 2 . 2 + Name
SIND-1
Comparison of SV GIND-1| 0| 1] 2 0
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Another type of Linking Attack:
First Doing SV Genotyping

Genomewide Signal Profile Dataset (Public) (S)

Anonymized
Sample ID

Genomewide Signal Profiles | HIV Status
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e
(
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(Optional)
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F 1
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A Y

1

1
1 1 y & i 4 1 LN
i or » TSV-1 8V-2  SV-3 - SV-N

i

1

1

Supplied
SV Panel
(Optional)

Anonymized SV Genotypes
SamplelD | sv.1|sv2|sv-3| *** | SV-N

HIV Status

SIND-1 | O | O | 2| <= | 2 +
SIND-2 | 2| 0 X | eee 0 -

SIND-n | O | X | X | -] 0 +

Predicted SV Genotype Dataset (G )
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Accuracy of Linking
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Results of the PsychENCODE consortium on using population-scale functional genomics to
understand neuropsychiatric disease & privacy aspects of this type of study

« /Core/ PsychENCODE: « [Exhavsi] Privacy & ENA-seq
Population-level analysis of functional genomics  _ |ntroduction to Genomic Privacy

data related to mental illness « The dilemma: The genome as

— Consortium intro & construction of an adult fundamental, inherited info
brain resource w/ 1866 individuals & full that’s very private v. need for
developmental time-course large-scale mining for med.

- Using the changing proportions of cell types research
(via single-cell deconvolution) (0 account « 2-sided nature of functional
for expression variation across a population, genomics data presents
disorders & development particularly tricky privacy issues

~ Generation ot a large QTL resource - eQTLs: Quantifying & removing
(~2.5M eQTLs + cQTLs & fQTLs) further variant info from expression

- Brain regulatory network consiruction using levels w/ ICI & predictability.

QTLs, Hi-C & activity relationships + defining Instantiating a practical linking
~79K PFC enhancers. Using this to link SCZ attack w/ noisy quasi-identifiers

GWAS SNPs to genes. - Signal Profiles |/lanifest

- Embedding the reg. network in a appreciable leakage from large &
deep-learning model (USSP 1o predict small deletions. Linking attacks
psychiatric disease from genotype & possible but additional complication
transcriptome. Using this to prioritize of SV discovery in addition to

particular pathways & genes. genotyping



Results of the PsychENCODE consortium on using population-scale functional genomics to
understand neuropsychiatric disease & privacy aspects of this type of study

» [Core] PsychENCODE: » [Exhaust] Privacy & RNA-seq
Population-level analysis of functional genomics  _ |ntroduction to Genomic Privacy

data related to mental illness « The dilemma: The genome as

— Consortium intro & construction of an adult fundamental, inherited info
brain resource w/ 1866 individuals & full that's very private v. need for
developmental time-course large-scale mining for med.

- Using the changing proportions of cell types research
(via single-cell deconvolution) to account « 2-sided nature of functional
for expression variation across a population, genomics data presents
disorders & development particularly tricky privacy issues

- Generation of a large QTL resource - eQTLs: Quantifying & removing
(~2.5M eQTLs + cQTLs & fQTLs) further variant info from expression

- Brain regulatory network construction using levels w/ ICI & predictability.

QTLs, Hi-C & activity relationships + defining Instantiating a practical linking
~79K PFC enhancers. Using this to link SCZ attack w/ noisy quasi-identifiers

GWAS SNPs to genes. - Signal Profiles: Manifest

- Embedding the reg. network in a appreciable leakage from large &
deep-learning model (DSPN) to predict small deletions. Linking attacks
psychiatric disease from genotype & possible but additional complication
transcriptome. Using this to prioritize of SV discovery in addition to

particular pathways & genes. genotyping



“Adult Capstone” Team — 1 of 3 capstones

PsychENCODE

Acknowledgment Daifeng Wang, Shuang Liu, Jonathan Warrell, Hyejung Won, Xu

Nistional inetits Chengfei Yan, Suhn Kyong Rhie, Kasidet Manakongtreecheep, Holly Zhou, Aparna

of Mental Health  yan Jiang, Kiran Girdhar, Gabriel Hoffman, Selim Kalayci, Zeynep Hulya Gumus
PsychENCODE Consortium,

*  Geetha Senthi Panos Roussos, Schahram Akbarian, Andrew E. Jaffe,
* Lora Bingaman Kevin White, Zhiping Weng, Nenad Sestan,
* David Panchision

*  Alexander Arguello Daniel H. Geschwind, James A. Knowles
* Thomas Lehner

Dedicated to Pamela Sklar

The PsyChENCODE Consortium: Anison E Ashley-Koch, Duke University; Gregory E Crawford, Duke University; Melanie E Garrett, Duke University; Lingyun Song, Duke University; Alexias Safi, Duke University;

Graham D Johnson, Duke University; Gregory A Wray, Duke University; Timothy E Reddy, Duke University; Fernando S Goes, Johns Hopkins University; Peter Zandi, Johns Hopkins University; Julien Bryois, Karolinska Institutet; Andrew E
Jaffe, Lieber Institute for Brain Development; Amanda J Price, Lieber Institute for Brain Development; Nikolay A Ivanov, Lieber Institute for Brain Development; Leonardo Collado-Torres, Lieber Institute for Brain Development; Thomas M
Hyde, Lieber Institute for Brain Development; Emily E Burke, Lieber Institute for Brain Development; Joel E Kleiman, Lieber Institute for Brain Development; Ran Tao, Lieber Institute for Brain Development; Joo Heon Shin, Lieber Institute for
Brain Development; Schahram Akbarian, Icahn School of Medicine at Mount Sinai; Kiran Girdhar, Icahn School of Medicine at Mount Sinai; Yan Jiang, Icahn School of Medicine at Mount Sinai; Marija Kundakovic, Icahn School of Medicine at
Mount Sinai; Leanne Brown, Icahn School of Medicine at Mount Sinai; Bibi S Kassim, Icahn School of Medicine at Mount Sinai; Royce B Park, Icahn School of Medicine at Mount Sinai; Jennifer R Wiseman, Icahn School of Medicine at Mount
Sinai; Elizabeth Zharovsky, Icahn School of Medicine at Mount Sinai; Rivka Jacobov, Icahn School of Medicine at Mount Sinai; Olivia Devillers, Icahn School of Medicine at Mount Sinai; Elie Flatow, Icahn School of Medicine at Mount Sinai;
Gabriel E Hoffman, Icahn School of Medicine at Mount Sinai; Barbara K Lipska, Human Brain Collection Core, National Institutes of Health, Bethesda, MD; David A Lewis, University of Pittsburgh; Vahram Haroutunian, Icahn School of Medicine
at Mount Sinai and James J Peters VA Medical Center; Chang-Gyu Hahn, University of Pennsylvania; Alexander W Charney, Mount Sinai; Stella Dracheva, Mount Sinai; Alexey Kozlenkov, Mount Sinai; Judson Belmont, Icahn School of
Medicine at Mount Sinai; Diane DelValle, Icahn School of Medicine at Mount Sinai; Nancy Francoeur, Icahn School of Medicine at Mount Sinai; Evi Hadjimichael, Icahn School of Medicine at Mount Sinai; Dalila Pinto, Icahn School of Medicine at
Mount Sinai; Harm van Bakel, Icahn School of Medicine at Mount Sinai; Panos Roussos, Mount Sinai; John F Fullard, Mount Sinai; Jaroslav Bendl, Mount Sinai; Mads E Hauberg, Mount Sinai; Lara M Mangravite, Sage Bionetworks; Mette A
Peters, Sage Bionetworks; Yooree Chae, Sage Bionetworks; Junmin Peng, St. Jude Children’s Hospital; Mingming Niu, St. Jude Children's Hospital; Xusheng Wang, St. Jude Children's Hospital; Maree J Webster, Stanley Medical Research
Institute; Thomas G Beach, Banner Sun Health Research Institute; Chao Chen, Central South University; Yi Jiang, Central South University; Rujia Dai, Central South University; Annie W Shieh, SUNY Upstate Medical University; Chunyu Liu,
SUNY Upstate Medical University; Kay S. Grennan, SUNY Upstate Medical University; Yan Xia, SUNY Upstate Medical University/Central South University; Ramu Vadukapuram, SUNY Upstate Medical University; Yongjun Wang, Central South
University; Dominic Fitzgerald, The University of Chicago; Lijun Cheng, The University of Chicago; Miguel Brown, The University of Chicago; Mimi Brown, The University of Chicago; Tonya Brunetti, The University of Chicago; Thomas
Goodman, The University of Chicago; Majd Alsayed, The University of Chicago; Michael J Gandal, University of California, Los Angeles; Daniel H Geschwind, University of California, Los Angeles; Hyejung Won, University of California, Los
Angeles; Damon Polioudakis, University of California, Los Angeles; Brie Wamsley, University of California, Los Angeles; Jiani Yin, University of California, Los Angeles; Tarik Hadzic, University of California, Los Angeles; Luis De La Torre
Ubieta, UCLA; Vivek Swarup, University of California, Los Angeles; Stephan J Sanders, University of California, San Francisco; Matthew W State, University of California, San Francisco; Donna M Werling, University of California, San
Francisco; Joon-Yong An, University of California, San Francisco; Brooke Sheppard, University of California, San Francisco; A Jeremy Willsey, University of California, San Francisco; Kevin P White, The University of Chicago; Mohana Ray,
The University of Chicago; Gina Giase, SUNY Upstate Medical University; Amira Kefi, University of lllinois at Chicago; Eugenio Mattei, University of Massachusetts Medical School; Michael Purcaro, University of Massachusetts Medical
School; Zhiping Weng, University of Massachusetts Medical School; Jill Moore, University of Massachusetts Medical School; Henry Pratt, University of Massachusetts Medical School; Jack Huey, University of Massachusetts Medical School;
Tyler Borrman, University of Massachusetts Medical School; Patrick F Sullivan, University of North Carolina - Chapel Hill; Paola Giusti-Rodriguez, University of North Carolina - Chapel Hill; Yunjung Kim, University of North Carolina - Chapel
Hill; Patrick Sullivan, University of North Carolina - Chapel Hill; Jin Szatkiewicz, University of North Carolina - Chapel Hill; Suhn Kyong Rhie, University of Southern California; Christoper Armoskus, University of Southern California; Adrian
Camarena, University of Southern California; Peggy J Farnham, University of Southern California; Valeria N Spitsyna, University of Southern California; Heather Witt, University of Southern California; Shannon Schreiner, University of
Southern California; Oleg V Evgrafov, SUNY Downstate Medical Center; James A Knowles, SUNY Downstate Medical Center; Mark Gerstein, Yale University; Shuang Liu, Yale University; Daifeng Wang, Stony Brook University; Fabio C. P.
Navarro, Yale University; Jonathan Warrell, Yale University; Declan Clarke, Yale University; Prashant S. Emani, Yale University; Mengting Gu, Yale University; Xu Shi, Yale University; Min Xu, Yale University; Yucheng T. Yang, Yale University;
Robert R. Kitchen, Yale University; Gamze Guisoy, Yale University; Jing Zhang, Yale University; Becky C Carlyle, Yale University; Angus C Nairn, Yale University; Mingfeng Li, Yale University; Sirisha Pochareddy, Yale University; Nenad
Sestan, Yale University; Mario Skarica, Yale University; Zhen Li, Yale University; Andre M.M. Sousa, Yale University; Gabriel Santpere, Yale University; Jinmyung Choi, Yale University; Ying Zhu, Yale University; Tianliuyun Gao, Yale
University; Daniel J Miller, Yale University; Adriana Cherskov, Yale University; Mo Yang, Yale University; Anahita Amiri, Yale University; Gianfilippo Coppola, Yale University; Jessica Mariani, Yale University; Soraya Scuderi, Yale University;
Anna Szekely, Yale University; Flora M Vaccarino, Yale University; Feinan Wu, Yale University; Sherman Weissman, Yale University; Tanmoy Roychowdhury, Mayo Clinic Rochester; Alexej Abyzov, Mayo Clinic Rochester;.

Yucheng T. Yang, Min Xu, Michael Gandal, Shaoke Lou, Jing Zhang, Jonathan J. Park,

Nathan, Mette Peters, Eugenio Mattei, Dominic Fitzgerald, Tonya Brunetti, Jill Moore,

Shi, Fabio Navarro, Declan Clarke, Mengting Gu, Prashant Emani,

)
(o)



Developmental Capstone

M Li, G Santpere, Y Imamura Kawasawa,
OV Evgrafov, FO Gulden, S Pochareddy,
SM Sunkin, Z Li, Y Shin,

Y Zhu, AMM Sousa, DM Werling, RR Kitchen, HJ Kang, M Pletikos, J Choi, S Muchnik, X
Xu, D Wang, B Lorente-Galdos, S Liu, P Giusti-Rodriguez, H Won, CA de Leeuw, AF
Pardinas, BrainSpan Consortium,

PsychENCODE Consortium, PsychENCODE Developmental Subgroup,
M Hu, F Jin, Y Li, MJ Owen, MC O'Donovan, JTR Walters, D Posthuma, MA Reimers, P
Levitt, DR Weinberger, TM Hyde, JE Kleinman, DH Geschwind, MJ Hawrylycz, MW State, SJ

Sanders, PF Sullivan,

ES Lein, JA Knowles, N Sestan

psychencode.org

67 = Lectures.GersteinLab.org



7.\ aHarmanci
N\ N D Greenbaum,
G Gursoy

" 4 | ¢ papers.gersteinlab.org/subject/ PrIVACy

Hiring Postdocs. See » AN N\ PrivaSig.gersteinlab.org
; f!‘Q,BS=.gerste|nIab.org : i PrivaSeq gersteiniab.org



Info about content in this slide pack

 General PERMISSIONS

- This Presentation is copyright Mark Gerstein,
Yale University, 2019.

- Please read permissions statement at

www.gersteinlab.org/misc/permissions.htmi .

- Feel free to use slides & images in the talk with PROPER acknowledgement
(via citation to relevant papers or link to gersteinlab.org).

- Paper references in the talk were mostly from Papers.GersteinLab.org.

« PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and

clipped images in this presentation see http://streams.gerstein.info .

- In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be
easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt
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