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Supervised Mining:

Overview



Supervised Learning
• Given: training data

– The input objects (usually represented as 
vectors) – x, y values

– The labels – colors

• Define: a function that determines 
the labels given the input objects

• Use the function to predict the labels 
of new objects

10 The random decision forest model

Fig. 2.3: Information gain for discrete, non-parametric distri-
butions. (a) Dataset S before a split. (b) After a horizontal split. (c)
After a vertical split.

fig. 2.4.
Figure 2.3a shows a number of data points on a 2D space. Di↵er-

ent colours indicate di↵erent classes/groups of points. In fig. 2.3a the
distribution over classes is uniform because we have exactly the same
number of points in each class. If we split the data horizontally (as
shown in fig. 2.3b) this produces two sets of data. Each set is asso-
ciated with a lower entropy (higher information, peakier histograms).
The gain of information achieved by splitting the data is computed as

I = H(S)�
X

i2{1,2}

|Si|
|S| H(Si)

with the Shannon entropy defined mathematically as: H(S) =
�
P

c2C p(c) log(p(c)). In our example a horizontal split does not sep-
arate the data well, and yields an information gain of I = 0.4. When
using a vertical split (such as the one in fig. 2.3c) we achieve better
class separation, corresponding to lower entropy of the two resulting
sets and a higher information gain (I = 0.69). This simple example
shows how we can use information gain to select the split which pro-
duces the highest information (or confidence) in the final distributions.
This concept is at the basis of the forest training algorithm.

Criminisi, Shotton, and Konukoglu Microsoft Technical Report 2011



Distinctions in 
Supervised Learning

• Regression vs Classification
– Regression: labels are quantitative
– Classification: labels are categorical

• Regularized vs Un-regularized
– Regularized: penalize model complexity to avoid over-fitting
– Un-regularized: no penalty on model complexity

• Parametric vs Non-parametric
– Parametric: an explicit parametric model is assumed
– Non-parametric: otherwise

• Ensemble vs Non-ensemble
– Ensemble: combines multiple models
– Non-ensemble: a single model
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Arrange data in a tabulated form, each row 
representing an example and each column 
representing a feature, including the dependent 
experimental quantity to be predicted.

predictor1 Predictor2 predictor3 predictor4 response

G1 A(1,1) A(1,2) A(1,3) A(1,4) Class A

G2 A(2,1) A(2,2) A(2,3) A(2,4) Class A

G3 A(3,1) A(3,2) A(3,3) A(3,4) Class B
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Represent predictors in abstract high 
dimensional space
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Tagged Data
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Find a Division to Separate Tagged Points
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Extrapolate to Untagged Points
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Probabilistic Predictions of Class
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Find a Division to Separate Tagged Points



Supervised Mining:

Decision Trees



Decision Trees

• Classify data by asking 
questions that divide 
data in subgroups

• Keep asking questions 
until subgroups 
become homogenous

• Use tree of questions 
to  make predictions

6 The random decision forest model

Fig. 2.1:Decision tree. (a) A tree is a set of nodes and edges organized
in a hierarchical fashion. In contrast to a graph, in a tree there are no
loops. Internal nodes are denoted with circles and terminal nodes with
squares. (b) A decision tree is a tree where each split node stores a test
function to be applied to the incoming data. Each leaf stores the final
answer (predictor). This figure shows an illustrative decision tree used
to figure out whether a photo represents and indoor or outdoor scene.

A tree is a collection of nodes and edges organized in a hierarchical
structure (fig. 2.1a). Nodes are divided into internal (or split) nodes
and terminal (or leaf) nodes. We denote internal nodes with circles
and terminal ones with squares. All nodes have exactly one incoming
edge. Thus, in contrast to graphs a tree does not contain loops. Also, in
this document we focus only on binary trees where each internal node
has exactly two outgoing edges.

A decision tree is a tree used for making decisions. For instance,
imagine we have a photograph and we need to construct an algorithm
for figuring out whether it represents an indoor scene or an outdoor
one. We can start by looking at the top part of the image. If it is blue
then that probably corresponds to a sky region. However, if also the

• Example: Is a picture taken inside or outside?
Criminisi, Shotton, and Konukoglu Microsoft Technical Report 2011



Rule 1 Rule 2

What makes a good rule?

• Want resulting groups to be as homogenous 
as possible

2/3 Groups homogenous
àGood rule

All groups still 50/50
à Unhelpful rule

Nando de Freitas 2012 University of British Columbia CPSC 340



Quantifying the value of rules

• Decrease in inhomogeneity
– Most popular metric: Information theoretic 

entropy

– Use frequency of classifier characteristic within 
group as probability

– Minimize entropy to achieve homogenous group

mixture of real-valued and categorical features, as well as items with some missing features.
They are expressive enough to model many partitions of the data that are not as easily achieved
with classifiers that rely on a single decision boundary (such as logistic regression or support
vector machines). However, even data that can be perfectly divided into classes by a hyperplane
may require a large decision tree if only simple threshold tests are used. Decision trees naturally
support classification problems with more than two classes and can be modified to handle
regression problems. Finally, once constructed, they classify new items quickly.

Constructing decision trees
Decision trees are grown by adding question nodes incrementally, using labeled training
examples to guide the choice of questions1,2. Ideally, a single, simple question would perfectly
split the training examples into their classes. If no question exists that gives such a perfect
separation, we choose a question that separates the examples as cleanly as possible.

A good question will split a collection of items with heterogeneous class labels into subsets
with nearly homogeneous labels, stratifying the data so that there is little variance in each
stratum. Several measures have been designed to evaluate the degree of inhomogeneity, or
impurity, in a set of items. For decision trees, the two most common measures are entropy and
the Gini index. Suppose we are trying to classify items into m classes using a set of training
items E. Let pi (i = 1,…,m) be the fraction of the items of E that belong to class i. The entropy
of the probability distribution  gives a reasonable measure of the impurity of the set E.

The entropy, , is lowest when a single pi equals 1 and all others are 0, whereas
it is maximized when all the pi are equal. The Gini index2, another common measure of

impurity, is computed by . This is again zero when the set E contains items from
only one class.

Given a measure of impurity I, we choose a question that minimizes the weighted average of
the impurity of the resulting children nodes. That is, if a question with k possible answers

divides E into subsets E1…,Ek, we choose a question to minimize . In many
cases, we can choose the best question by enumerating all possibilities. If I is the entropy
function, then the difference between the entropy of the distribution of the classes in the parent
node and this weighted average of the children’s entropy is called the information gain. The
information gain, which is expressible via the Kullback-Leibler divergence6, always has a
nonnegative value.

We continue to select questions recursively to split the training items into ever-smaller subsets,
resulting in a tree. A crucial aspect to applying decision trees is limiting the complexity of the
learned trees so that they do not overfit the training examples. One technique is to stop splitting
when no question increases the purity of the subsets more than a small amount. Alternatively,
we can choose to build out the tree completely until no leaf can be further subdivided. In this
case, to avoid overfitting the training data, we must prune the tree by deleting nodes. This can
be done by collapsing internal nodes into leaves if doing so reduces the classification error on
a held-out set of training examples1. Other approaches, relying on ideas such as minimum
description length1,6,7, remove nodes in an attempt to explicitly balance the complexity of the
tree with its fit to the training data. Cross-validation on left-out training examples should be
used to ensure that the trees generalize beyond the examples used to construct them.

Kingsford and Salzberg Page 2

Nat Biotechnol. Author manuscript; available in PMC 2009 June 24.
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Algorithm

• For each characteristic:
– Split into subgroups based on each possible value of 

characteristic
• Choose rule from characteristic that maximizes 

decrease in inhomogeneity
• For each subgroup:
– if (inhomogeneity < threshold):

• Stop
– else:

• Restart rule search (recursion)
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Overfitting, Cross Validation, 
and Pruning



Extensions of Decision Trees

• Decision Trees method is very sensitive to 
noise in data

• Random forests is an ensemble of decision 
trees, and is much more effective.



Supervised Mining:

Assessment, Cross-
Validation & ROC Curves



Evaluating performance: What? How?

A. What do we want to evaluate?

GENERALIZATION

Therefore it is mandatory to divide your dataset:

Alternatively, use Cross Validation:
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B. How do we evaluate performance?

1. Classification problems

2. Regression problems Sum 
of squares error

Root Mean Square error

Accuracy
TP+TN/(TP+FP+FP+TN)

Sensitivity (or TPR)
TP/P =TP/(TP+FN)

Specificity
TN/N = TN/(TN+FP)

True positive rate
TP/(TP+FP)

False positive rate
FP/N = FP/(FP+TN)

ROC analysis is good for  
comparing binary classifiers
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Intuition : 
ROC Curve

[From Biometrical Fusion - input statistical distribution ]
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Model dimensionality and overfitting

We are given the red dots.
We assume that they are noisy samples from a  
signal/(function) – the blue curve – which we do not  
have (we only have the red dots).
We want to predict new points, i.e. the y coordinates  
for other values of x (e.g. x > 1)
Our model needs to approximate the blue function.  
We decide to do it with polynomials.

Degree 1 polynomial Degree 2 polynomial Degree 3 polynomial Degree 10 polynomial

Which one is best? And why?
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How does the GENERALIZATION performance vary, as we  
increase the complexity of the polynomial?

• Occam's razor (William of Occam, ~1300): Accept the  
simplest explanation that fits the data.

We should prefer simpler models to more complex models, and  
this preference should be traded off against the extent to 
which the  model fits the data.

8
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• IMPORTANT: increasing the number of features  
may lead to a reduction in performance if the  
number of datapoints is not increased. Why?

This is related to the “Curse of Dimensionality” Bellman, 1961.
9
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Comparison of Predictions against a 
Positive and Negative Gold Standard

Threshold "predictions" at different 
levels and compare to + and - gold 
standards

ROC plot
(cross validated)
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Effect on 
Predictions of 

Large Number of 
Negatives
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Importance of Balanced 
Positive and Negative Examples
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Supervised Mining:

SVMs
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Find a Division to Separate Tagged Points
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Discriminant to Position Plane
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Fisher discriminant analysis
• Use the training set to reveal the structure of class distribution 

by seeking a linear combination 
• y = w1x1 + w2x2 + ... + wnxn which maximizes the ratio of the 

separation of the class means to the sum of each class 
variance (within class variance). This linear combination is 
called the first linear discriminant or first canonical variate. 
Classification of a future case is then determined by choosing 
the nearest class in the space of the first linear discriminant and 
significant subsequent discriminants, which maximally separate 
the class means and are constrained to be uncorrelated with 
previous ones.
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• A very powerful tool for classifications
• Example Applications:
– Text categorization
– Image classification
– Spam email recognition, etc

• It has also been successfully applied in many 
biological problems: 
– Disease diagnosis
– Automatic genome functional annotation
– Prediction of protein-protein interactions
– and more…

Support Vector Machines



• Example: Leukemia patient classification 

ALL: acute lymphoblastic leukemia
AML: acute myeloid leukemia

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



• A simple line suffices to separate the expression profiles of 
ALL and AML

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



• In the case of more than two genes, a line generalizes to a plane or 
“hyperplane”. 

• For generality, we refer to them all as “hyperplane”
William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



• Is there a “best” line?

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



• The maximum margin hyperplane

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



• Denote each data point as (xi, yi)
• xi is a vector of the expression profiles
• yi = -1 or 1, which labels the class 
• A hyperplane can be represented as: w*x + b = 0
• The margin-width equals to: 2/ ||w ||, ||w ||= w•w

http://en.wikipedia.org/wiki/Support_vector_machine



• Find a hyperplane such that:

– No data points fall between the lines                             and  

– The margin 2/||w|| is maximized

• Mathematically,

– Minimizew,b  1/2 ||w||2, subject to:

– for yi = 1,

– for yi = -1, 

– Combining them, for any i, 

• The solution expresses w as a linear combination of the xi

• So far, we have been assuming that the data points from two 

classes are always easily linearly separable. But that’s not 

always the case

w• xi + b ≥1

w• x + b = −1 w• x + b = +1

w• xi + b ≤ −1
yi (w• xi + b) ≥1

http://en.wikipedia.org/wiki/Support_vector_machine



• What if…

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



• Allow a few anomalous data points

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



• The soft-margin SVM

–

– subject to, for any i, 

– Si are the slack variables

– C controls the number of tolerated misclassifications 
(It's effectively a regularization parameter on model complexity)

– A small C would allow more misclassifications

– A large C would discourage misclassifications

– Note that even when the data points are linearly 
separable, one can still introduce the slack variables to 
pursue a larger separation margin

yi (w• xi + b) ≥1− si, si ≥ 0

minimize
w,b,s

1
2
||w ||2 +C si

i
∑

http://en.wikipedia.org/wiki/Support_vector_machine



• Are linear separating 
hyperplanes 
enough?

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006

Yes 
(by a 1D-
hyperplane 
= dot) 

NO



• Transform (xi) into (xi, xi
2)

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



• Non-linear SVM
– In some cases (e.g. the above example), even soft-margin 

cannot solve the non-separable problem
– Generally speaking, we can apply some function to the 

original data points so that different classes become 
linearly separable (maybe with the help of soft-margin)

– In the above example, the function is f(x) = (x, x2)

– The most import trick in SVM: to allow for the 
transformation, we only need to define the “kernel 
function”, 

– The above example essentially uses a polynomial kernel

k(xi, x j ) = f (xi )• f (x j )



• Math behind the “kernel trick”
– In optimization theory, a constrained optimization problem 

can be formulated into its dual problem (the original 
problem is called primal problem)

– The dual formulation of SVM can be expressed as:

– ,  subject to 

– The “Kernel”:             , can be replaced by more 
sophisticated kernels: 

Maximize
α

αi
i
∑ −

1
2

yiyjαiα j xi • x j
i, j
∑

yiαi = 0,0 ≤
i
∑ αi ≤C

xi • x j
k(xi, x j ) = f (xi )• f (x j )

Complicated!



• “Support vector machine”, where does the 
name come from?

– The xi for which αi > 0 are called support vectors
– They fall between or right on the separating margins

from http://cbio.ensmp.fr/~jvert/talks/110401mines/mines.pdf



Key idea in the Kernel Trick
• Original SVM optimization for refining the hyperplane 

parameters w & b in terms of a linear combination of xi can be 
replaced by a different optimization problem using "Lagrange 
multipliers" ai
– One only optimizes using the product of xi*xj, now expressing the 

solution in terms of ai which are non-zero for xi that function as 
support vectors 

• In a non-linear SVM xi*xj is replaced by f(xi)*f(xj), so you don't 
need to know f(xi) itself only the product
– This is further formalized in the kernel trick where f(xi)*f(xj) is just 

replaced by k(xi, xj). That is, one only has to know the “distance” 
between xi & xj in the high-dimensional space -- not their actual 
representation



• Two commonly used kernels 
(and there are more)

• Polynomial kernel:
–
– a = 1 (inhomogeneous) or 0 (homogenous)
– d controls the degree of polynomial and henceforth the 

flexibility of the classifier
– degenerates to linear kernel when a = 0 and d = 1

• Gaussian kernel:
–
– σ controls the width of the Gaussian and plays a similar 

role as d in the polynomial kernels

k(xi, x j ) = (xi • x j + a)
d

k(xi, x j ) = (−1/σ || xi − x j ||
2 )



• More about kernels
– With kernels, non-vector data can be easily handled – we only need to 

define the kernel function between two objects
– Examples of non-vector biological data include: DNA and protein 

sequences (“string kernels”), nodes in metabolic or protein-protein 
interaction networks, microscopy images, etc

– Allows for combining different types of data naturally – define kernels 
on different data types and combine them with simple algebra

• Questions for practitioners: Which kernel to use? How to 
choose parameters?
– Trial and error
– Cross-validation

• High-degree kernels always fit the training data well, but at 
increased risks of over-fitting, i.e. the classifier will not 
generalize to new data points
– One needs to find a balance between classification accuracy on the 

training data and regularity of the kernel (not allowing the kernel to be 
too flexible)



• A low-degree kernel (left) and an over-fitting high-
degree kernel (right)

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



• The parameter C has a similar role

– Large C will make few classification errors on the training 
data

– But this may not generalize to the testing data

– Small C pursues a large separating margin at the expenses 
of some classification errors on the training data.

– The accuracy more likely to generalize to testing data



Large C

Small C

Intermediate C

http://cbio.ensmp.fr/~jvert/talks/110401mines/mines.pdf



Supervised Mining:

Decision Boundary & 
Semi-supervised 

Approaches



Decision boundaries:
SVM v Tree v Nearest NBR

(a) A support vector machine (SVM) forms an affine decision surface (a straight line in the case of two dimensions) in the original 
feature space or a vector space defined by the similarity matrix (the kernel), to separate the positive and negative examples and 
maximize the distance of it from the closest training examples (the support vectors, those with a perpendicular line from the
decision surface drawn). It predicts the label of a genomic region based on its direction from the decision surface. In the case a 
kernel is used, the decision surface in the original feature space could be highly non-linear. (b) A basic decision tree uses feature-
parallel decision surfaces to repeatedly partition the feature space, and predicts the label of a genomic region based on the partition 
it falls within. (c) The one-nearest neighbor (1-NN) method predicts the label of a genomic region based on the label of its closest 
labeled example. In all three cases, the areas predicted to be positive and negative are indicated by the red and green background 
colors, respectively.

[Yip et al. Genome Biology 2013 14:205   doi:10.1186/gb-2013-14-5-205]



Semi-supervised Methods 
• Supervised & Unsupervised: 

Can you combine them? YES
– RHS (c) shows modifying the optimum decision 

boundary in (a) by "clustering" of unlabeled points

Supervised, unsupervised and semi-supervised learning. (a) In supervised learning, the model (blue line) is learned based on the positive and negative training 
examples, and the genomic region without a known class label (purple circle) is classified as positive according to the model. (b) In unsupervised learning, all examples 
are unlabeled, and they are grouped according to the data distribution. (c) In semi-supervised learning, information of both labeled and unlabeled examples is used to 
learn the parameters of the model. In this illustration, a purely supervised model (dashed blue line) classifies the purple object as negative, while a semi-supervised 
model that avoids cutting at regions with a high density of genomic regions (solid blue line) classifies it as positive.
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Supervised (& Unsupervised) Mining:

Practical Applications in 
Genomics for Enhancer 

Finding 



Epigenomics and ‘chromatin state’ signatures

• Learn de novo 
combinations of 
chromatin marks
• Reveal functional 

elements
• Use for genome 

annotation
• Use for studying 

dynamics across 
many cell types

Promoter states

Transcribed states

Active Intergenic

Repressed

DNA

Histone
tails

Chromatin
‘marks’

61Adapted from http://compbio.mit.edu/slides/253_ManolisKellis_TenureCase7.ppt



Supervised enhancer prediction: MatchedFilter

62
Sethi et al. bioRxiv 2018: https://doi.org/10.1101/385237

SVM
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Hidden Markov Model

Adapted from http://www.davidsbatista.net/blog/2017/11/11/HHM_and_Naive_Bayes/

Observations:

States: 

• HMM is used to model a sequential data. Each state i is only depending upon the state i-1. 
• The States cannot be observed. Only the sequence of observations at each state is known. 
• The probably of each states and observations can be calculated from their dependencies. 



ChromHMM: learning ‘hidden’ chromatin states
Transcription Start Site

64

Enhancer DNA

Observed
chromatin 
marks. Called 
based on a 
poisson 
distribution

Most likely Hidden 
State

Transcribed Region

1 6 53 4 6 6 6 6 5

1:

3:

4:

5:

6:

5
High Probability Chromatin Marks in State

2:

0.8

0.9

0.9

0.8
0.7

0.9

200bp 
intervals

All probabilities are 
learned de novo from 
chromatin data alone 
(Baum-Welch aka. EM)

2

K4me3 K36me3 K36me3 K36me3 K36me3K4me1 K4me3 K4me1

K27ac

0.8

K4me1

K36me3

K27ac

K4me1K4me3

K4me3

K4me
1

K4me1

Each state: vector of emissions, vector of transitions

Adapted from http://compbio.mit.edu/slides/253_ManolisKellis_TenureCase7.ppt



Chromatin states dynamics across nine cell types

• State definitions are cell-type invariant
– Same combinations consistently found

• State locations are cell-type specific
– Can study pair-wise or multi-way changes

65Adapted from http://compbio.mit.edu/slides/253_ManolisKellis_TenureCase7.ppt


