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Abstract  

To broaden our understanding of human neurodevelopment, we profiled transcriptomic and 

epigenomic landscapes across brain regions and/or cell types for the entire span of prenatal and 

postnatal development. Integrative analysis revealed temporal, regional, sex, and cell type-specific 

dynamics. We observed a global transcriptomic cup-shaped pattern, characterized by a late-fetal 

transition associated with sharply decreased regional differences and changes in cellular 

composition and maturation, followed by reversal in childhood-adolescence, and accompanied by 

epigenomic reorganizations. Analysis of gene co-expression modules revealed relationships with 

epigenomic regulation and neurodevelopmental processes. Genes with genetic associations to 

brain-based traits and neuropsychiatric disorders (including MEF2C, SATB2, SOX5, TCF4, and 

TSHZ3) converged in a small number of modules and distinct cell types, revealing insights into 

neurodevelopment and the genomic basis of neuropsychiatric risks.  
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Introduction 

The development of the human central nervous system is an intricate process that unfolds over 

several decades, during which time numerous distinct cell types are generated and assembled into 

functionally distinct circuits and regions (1-4). These basic components of the brain are neither 

born mature nor are they static throughout their lifetimes; over the course of development, they 

undergo a variety of molecular and morphological changes. As a consequence, the characteristics 

of a given cell, circuit, or brain region described at a given time offer only a snapshot of that unit. 

The processes guiding the development of the nervous system are reliant on the diversity 

and precise spatiotemporal regulation of the transcriptome (1-4). There is increasingly persuasive 

evidence that dysregulation of the transcriptional, regulatory, and epigenetic processes underlying 

the spatial architecture and temporal progression of human neurodevelopment can have dire 

consequences for brain function or strongly impact the risk of neuropsychiatric disorders (5-7). 

Indeed, many of the regulatory and epigenomic features governing the transcriptome of the 

developing human nervous system may be specific to particular developmental contexts in humans 

or closely related primate species. As such, it is difficult to identify or fully study human functional 

genomic elements using most common model organisms or cell culture systems (8). Assaying 

human cells and postmortem tissues solves some of these problems, but challenges, including the 

availability and quality of developmental tissue, limit the scale of such analyses. Consequently, 

despite ongoing efforts, our understanding of different facets of the transcriptional, regulatory, and 

epigenetic architecture of the human nervous system, particularly during early developmental 

periods, remains highly incomplete (8-21). 

To begin rectifying this deficiency, the NIH-funded PsychENCODE 

(www.psychencode.org) and BrainSpan Consortia (www.brainspan.org) sought to generate and 
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analyze multi-dimensional genomics data from the developing and adult human brain in healthy 

and disease states.  

 

Study design and data generation  

Here, we describe the generation and integrated analysis of multiple genomic data modalities 

including transcriptomic profile, DNA methylation status, histone modifications, CTCF binding 

sites, and genotype generated from bulk tissue (1,230 samples from 48 brains) or at the single 

cell/nucleus level (18,288 cells/nuclei from 12 brains) from 60 de-identified post-mortem brains 

obtained from clinically and histopathologically unremarkable donors of both sexes and multiple 

ancestries. Subject ages ranged from 5 postconceptional weeks (PCW) to 64 postnatal years (PY) 

(Fig. 1 and tables S1 to S6). Genotyping of DNA extracted from brain with a HumanOmni2.5-8 

BeadChip confirmed subject ancestry and revealed no obvious genomic abnormalities (22). 

For transcriptome analysis, tissue-level mRNA-Seq was performed on a total of 607 

histologically verified, high-quality tissue samples from 16 anatomical brain regions (11 areas of 

the neocortex [NCX], hippocampus [HIP], amygdala [AMY], striatum [STR], mediodorsal 

nucleus of thalamus [MD], and cerebellar cortex [CBC]) involved in higher-order cognition and 

behavior (Fig. 2A, (22)). These regions were systematically dissected from 41 brains ranging in 

age from 8 PCW to 40 PY (18 females and 23 males; postmortem interval (PMI) = 12.9 ± 10.4 

hours; tissue pH = 6.5 ± 0.3; RNA integrity number = 8.8 ± 1) (Fig. 1 and table S1). Due to the 

limited amounts of prenatal samples, small RNA sequencing (smRNA-Seq) was performed on 16 

regions of 22 postnatal brains with 278 samples passing quality control measures (Fig. 1 and table 

S2). These tissue-level RNA-Seq analyses were complemented by single-cell RNA-Seq (scRNA-

Seq) data generated from 1,195 cells collected from embryonic fronto-parietal neocortical wall 
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and mid-fetal fronto-parietal neocortical plate and adjacent subplate zone of an independent set of 

9 brains ranging in age from 5 to 20 PCW (Fig. 1 and table S3) and single-nuclei RNA-Seq data 

(snRNA-Seq) generated from 17, 093 nuclei from the dorsolateral prefrontal cortex (DFC, aka 

DLPFC) of three adult brains (Fig. 1 and table S4). For epigenome analyses, DNA cytosine 

methylation was profiled with the Infinium HumanMethylation450 BeadChip in 269 postnatal 

samples covering the same 16 brain regions analyzed by RNA-Seq (Fig. 1 and table S5). 

Additional epigenomic data was generated with ChIP-Seq for H3K4me3, H3K27me3, and 

H3K27ac histone marks and the epigenetic regulatory protein CTCF, which together identify a 

large fraction of active enhancers, promoters, repressors, and insulators. These data were generated 

from DFC and CBC of a subset of samples from mid-fetal, infant, and adult brains (Fig. 1 and 

table S6). Stringent quality control measures (figs. S1 to S8) were applied to all datasets before in-

depth analyses. We also validated some results by applying independent approaches (figs. S9, S10, 

S18). Finally, to enable more powerful comparisons, we grouped specimens into 9 time windows 

(W1-W9) on the basis of major neurodevelopmental milestones and unsupervised transcriptome-

based temporal arrangement of constituent specimens (Fig. 1A and tables S1 to S6).  

 

Global spatio-temporal dynamics 

We found that most protein coding genes were temporally (67.8%) or spatially (54.5%) 

differentially expressed (22) between at least two time windows or regions, respectively, with the 

majority of spatially differentially expressed genes (95.8%) also temporally differentially 

expressed. To gain a broad understanding of this transcriptomic variation, we analyzed the level 

of similarity between individual samples in the mRNA-Seq dataset using multidimensional scaling 

applied to both gene and isoform transcript-level analyses (Fig. 2B and figs. S11, S12). In both 
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analyses, we found a clear divide between samples from embryonic through late mid-fetal 

development (W1-4) and samples from late infancy through adulthood (W6-9), with samples from 

the late fetal period through early infancy (W5) generally spanning this divide. To determine the 

relationship between these three groups, we performed unsupervised hierarchical clustering 

analysis and found that all samples from W5, including the late fetal samples, were more similar 

to early postnatal samples than to late mid-fetal samples (fig. S13). Analysis of large-scale, intra-

regional changes in the transcriptome across time also suggest a major transition that begins prior 

to birth: the transcriptomes of major brain regions and neocortical areas correlated well across both 

embryonic and early to mid-fetal (W1-4) and later postnatal (W6-9) development, but displayed a 

sharp decrease in correlation across late fetal development and early infancy (W5) (Fig. 2C and 

fig. S14). This transition was also apparent at the inter-regional level. Pairwise comparisons of 

gene expression across all 16 brain regions found a reduction in the number of genes showing 

differential regional expression during W5 relative to all other windows (fig. S15). Taken together, 

our observation of high variation during embryonic and early to mid-fetal ages followed by a 

decrease across late fetal ages and the subsequent resumption of higher levels of inter- and intra-

regional variation during late childhood and adolescence, revealed a cup-shaped, or hourglass-like, 

pattern of transcriptomic development (Fig. 2D). 

To further explore how regional transcriptomic profiles change with age, we applied the 

adjustment for confounding principal component analysis algorithm (AC-PCA) (23) which adjusts 

for inter-individual variations. Within any given developmental window, AC-PCA exhibited a 

clear separation of brain regions, but the average dissimilarity between transcription profiles of 

brain regions declined from W1 to W5 and then increased with age after W5 (Figs. 2E, 2F and fig. 

S16). Implying a relationship between transcriptional signatures and developmental origin, we 
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found that dorsal pallium-derived structures of the cerebrum (i.e., NCX, HIP, and AMY) as well 

as STR became increasingly similar across prenatal development, while CBC and MD remained 

most distinct across all time windows. To confirm these observations and to evaluate the 

contribution of each brain region to the regional variation described by AC-PCA, we quantified 

the mean distance in the first two principal components across brain regions, excluding from the 

AC-PCA one region at a time. Due to the relative transcriptomic uniqueness of the CBC, its 

exclusion unmasked a qualitatively distinct and pronounced cup-shaped pattern with a transition 

beginning prior to birth and spanning the late fetal period and early infancy (Fig. 2F). CBC was 

again the most distinct region of the brain following multidimensional scaling analysis for 

expressed mature miRNAs, a small RNA species enriched within our small RNA-Seq dataset, and 

the dominant contributor to miRNA expression variance (fig. S17). 

The global late fetal transition and overall cup-shaped developmental dynamics we 

observed were also apparent when this analysis was repeated for the 11 neocortical areas included 

in this study (Fig. 3A and fig. S16). We observed greater dissimilarity across areas at early fetal 

ages (Fig. 3A), with prefrontal areas (medial prefrontal cortex [MFC], orbital prefrontal cortex 

[OFC], DFC, and ventrolateral prefrontal cortex [VFC]) being the most distinct. In addition, 

reflecting the spatial and functional topography of the neocortex, both rostro-caudal and dorsal-

ventral axes were evident in the transcriptome during fetal development. Areal differences were 

also seen at later ages, with functional considerations likely taking precedence over topographical 

arrangements. For example, VFC clustered closely with primary motor (M1C) and somatosensory 

(S1C) cortex, likely reflecting functional relationships with orofacial regions of the motor and 

somatosensory perisylvian cortex (fig. S16). Across the entirety of human brain development, the 

transcriptomic similarity between cortical regions also showed a pronounced decrease centered on 
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the late fetal and early infancy samples of W5 (i.e., perinatal window), again reminiscent of a cup-

shaped pattern (Figs. 3A, 3B and fig. S16). 

Similar to gene expression, global measures of alternative splicing, such as the ratio 

between reads including or excluding exons (i.e., the percent spliced in index, PSI), were higher 

during prenatal than postnatal ages (fig. S18 and table S7). So too was the gene expression of 68 

RNA-binding proteins selected due to their involvement in RNA splicing and their analysis in 

adulthood by the Genotype-Tissue Expression (GTEx) project (24). Hierarchical clustering of 

expression data for these proteins also revealed a late fetal transition (fig. S19). Coincident with 

these observations, we found that genes exhibiting the highest inter-regional variation in 

expression in any given window (see (22)) exhibited a higher PSI during that window than 

iteratively chosen control groups of genes (fig. S18). Taken together, these analyses suggest broad 

phenomena in the developing human brain, including a late fetal transition in intra- and inter-

regional transcriptomic variation, may be amplified by alternative splicing. 

 

Cellular heterogeneity and developmental dynamics 

The high inter-areal variation observed during embryonic and early-to-mid fetal development (Fig. 

3B) coincides with a crucial period in neural development and the suspected etiology of psychiatric 

diseases (4). To help understand the temporal dynamics underlying this variation in gene 

expression, we analyzed our scRNA-Seq data from embryonic front-parietal neocortical wall and 

mid-fetal fronto-parietal neocortical plate and adjacent subplate zone, alongside our snRNA-Seq 

data from adult human neocortex and other independent datasets from overlapping developmental 

time points (12, 25, 26). To do so, we first applied a clustering and classification algorithm (27, 

28) to the prenatal scRNA-Seq data following an initial division of the dataset based on age of the 
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donor brain (i.e. embryonic or fetal), obtaining 24 transcriptomically distinct cell clusters. 

Reflecting the rapid developmental change occurring across embryonic and fetal development and 

the relative homogeneity of cell type composition as compared to adult ages, as well as the specific 

distribution of samples in our dataset, a number of these clusters were comprised of cells from 

only a single donor brain, and vice versa. Suggesting this resulted from spatiotemporal changes 

across brain development rather than artifactual changes related to data processing, we confirmed 

broad classifications of individual cells and general relationships between cell clusters and donor 

brains using an alternative clustering algorithm (fig. S21). Differential expression analysis and 

measurements of expression specificity recovered well-known gene markers of distinct types of 

neuronal and non-neuronal progenitor and postmitotic cell types (figs. S20, S22 and table S8), as 

well as closely related groups of cell types (i.e., markers enriched in all prenatal excitatory neuron 

clusters) (fig. S22).   

We complemented these data with snRNA-Seq from adult human DFC (fig. S20), where 

we identified 29 transcriptomically distinct cell clusters representing various populations of 

glutamatergic excitatory (ExN) projection neurons, GABAergic interneurons (InN), 

oligodendrocyte progenitor cells, oligodendrocytes, astrocytes, microglia, endothelial cells, and 

mural cells (i.e., pericytes and vascular smooth muscle cells) (fig. S21). Alignment of our prenatal 

data with adult snRNA-Seq data revealed hierarchical relationships and similarities between major 

cell classes, reflecting their developmental origins and functional properties (fig. S23). Notably, 

putative embryonic and fetal excitatory neurons clustered near, but did not wholly overlap with 

their adult counterparts. We also observed transient transcriptomic entities, such as fetal cells in 

the oligodendrocyte lineage that clustered separately from their adult counterparts. Similarly, 

nascent excitatory neurons generally did not cluster with progenitor cells nor with fetal or adult 
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excitatory neurons, indicating their maturationally distinct status. Confirming the validity of our 

prenatal scRNA-Seq and adult snRNA-Seq data, alignment of our prenatal data with cells from a 

previously published dataset (9) consisting of mid-fetal and adult human neocortical cells yielded 

similar relationships between prenatal and adult cell types (fig. S23). Comparison of neuronal 

transcriptomes from our prenatal single cells with both our adult single nucleus data and 

independently generated adult single nucleus data (27) also confirmed key differences between 

embryonic, mid-fetal, and adult populations. We observed limited transcriptional diversity in 

embryonic and mid-fetal excitatory and inhibitory neuron populations in the neocortex as 

compared to the adult counterparts. The clusters identified in our prenatal dataset did not express 

specific combinations of marker genes described for the adult excitatory (fig. S24) and inhibitory 

(fig. S25) neurons. For example, the embryonic and mid-fetal neocortical excitatory neurons 

expressed combinations of genes known to be selectively enriched in different layers in adult 

human or mouse neocortex (29-31), as previously shown in the prenatal human and mouse 

neocortex (12, 31). Notably, genes enriched in adult excitatory projection neuron subtypes located 

in layer (L) 5 and L6, such as BCL11B (CTIP2) and FEZF2 (FEZL, ZFP312, or ZNF312), were 

co-expressed with L2-4 intracerebral excitatory projection neuron markers, such as CUX2, in 

certain embryonic and mid-fetal excitatory cell types (figs. S24, S26). We also observed temporal 

changes in the co-expression patterns of cell type-specific marker genes in other cell types. For 

example, single cell data from mid-fetal NCX revealed frequent co-expression of RELN, a marker 

for L1 Cajal-Retzius neurons (32), and PCP4 (75.9% of 133 PCP4-expressing cells; RPKM >=1), 

a marker previously shown to be expressed by deep layer excitatory neurons (33). In contrast, 

analysis of snRNA-Seq suggested only sporadic co-expression of these genes (10.8% of 6084 

PCP4-expressing cells, UMI >=1) in the adult human DFC. Subsequent immunohistochemistry 
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on independent specimens confirmed the robust co-expression of these genes in L1 of the prenatal 

cortex, but not in L1 of the adult cortex or in other cortical layers (fig. S26). These data imply that 

the molecular identities of many neuronal cell types are not fully resolved before the end of mid-

fetal development and are likely malleable during early postmitotic differentiation.  

Next, we utilized our single cell/nucleus datasets to deconvolve bulk tissue mRNA-Seq 

samples and estimate temporal changes in the relative proportions of major cell types in the 

neocortex. The combined analysis revealed the cellular architecture of distinct neocortical areas 

and their variations across development. We observed temporal changes in cellular composition 

and maturational states, including the most dramatic changes during a late fetal transition (Figs. 

3C, 3D, 3E). For example, transcriptomic signatures for fetal excitatory neurons and fetal 

interneurons were generally inversely correlated with progenitor cell signatures during embryonic 

and early fetal development, but fetal neuron signatures nonetheless decreased across mid-to-late 

fetal development despite a concomitant reduction in the progenitor cell signature, an observation 

that was likely affected by our dissection strategy (Fig. 3C, (22)). Similarly, signatures for adult 

excitatory neurons increased rapidly across the late fetal period and early infancy, coincident with 

the decrease in signatures of fetal excitatory neurons and interneurons (Fig. 3C). As expected, the 

molecular signatures for early born, deep layer excitatory neurons preceded those for late born, 

upper layer excitatory neurons (fig. S27). Transcriptomic signatures for prenatal oligodendrocytes 

and prenatal astrocytes also began to emerge during mid-fetal periods and increased rapidly across 

the late fetal transition and early infancy (Fig. 3C). Demonstrating the robustness of these 

observations, independent deconvolution using two alternate fetal single cell datasets (12, 26) 

yielded similar results (figs. S27, S30).  
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Given the increase in adult cell type signatures during W5, we next reasoned that the 

observed decrease in inter-regional transcriptomic divergence during late fetal periods and infancy 

may reflect a synchronized transition from fetal to more mature features of neural cells. 

Consequently, we analyzed the variance in cell type specific signatures across neocortical areas, 

which varies in accordance with their relative proportion, and found that the maximum cell type 

inter-areal variation through time recapitulated the developmental cup-shaped pattern (Fig. 3D), 

with large variation in the proportion of neural progenitor cells and fetal excitatory neurons (figs. 

S28, S29). Beginning during early postnatal periods, we observed increased proportions and 

variance in the signatures of astrocytes and, by adulthood, mature excitatory neurons (Fig. 3E). 

These observed temporal differences in the magnitudes and variances of the relative proportions 

of certain cell types and the global heterogeneity of the cell-type composition at each window 

likely at least partially explain the observed pattern of inter-areal differences across development. 

Gene Ontology (GO) enrichment analysis using the top variant genes in each window, with all 

genes expressed in each window as background, provided further support for these changes in cell 

composition across areas and time. Commensurate with the changes we observed in discrete cell 

populations, biological processes including neurogenesis in early developmental windows (W3-

4), myelination in the perinatal window (W5), and sensory/ion activity calcium-related biological 

processes in later postnatal windows (W7-9), among others, exhibited regional variation in the 

global brain transcriptome (fig. S31 and table S9). Similar patterns of inter-regional variation 

involving discrete cell types were also observed in the macaque neocortical transcriptome (34), 

indicating that these are conserved and consistent features of prenatal primate neocortex.  

Other lines of evidence also suggested pronounced and qualitatively distinct regional 

differences in myelination, synaptic function, and neuronal activity. For example, although we 
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observed differences in the expression of genes associated with these processes (10) across the 

neocortex (fig. S31 and table S9), TempShift, a Gaussian-based model that allows the 

quantification of temporal shifts in the trajectories of groups of genes represented by their first 

principal components (34), indicated that of these processes only genes associated with 

myelination displayed such a shift (Fig. 4A). Conversely, perhaps reflecting functional or areal 

diversity in cell subtypes, we observed no similar temporal shift in the expression of genes 

associated with synaptogenesis or neuronal activity, confirming these results through reference to 

published post-translational analyses of myelinated fiber density (35) and synaptic density (36) 

conducted across multiple neocortical areas (Fig. 4B). Crucially, although genes associated with 

these processes were expressed across the late fetal transition (Fig. 4C), of the processes analyzed, 

only myelination contributed to the increased inter-areal differences we observed during this 

period (Fig. 4D). Suggesting these differences are a conserved feature of primate development, we 

also observed similar areal differences in the transcriptional signatures of oligodendrocytes in the 

macaque neocortex.  

Overall, these observations indicate that higher levels of divergence during early prenatal 

and later postnatal development reflect regional variations in cell type composition, likely arising 

from topographical variation in progenitor populations and neuron development during prenatal 

ages and cell type and functional diversification during later postnatal ages.  

 

Spatio-temporal and multimodal integration 

We next sought to assess temporal variation in epigenetic signatures and their relationships to gene 

expression, development, and biological processes. Global DNA methylation profiling revealed 

that the majority of CpG loci were either hyper (37.5%; Beta value [β]>=0.8) or hypo (31.8%; 
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ß<=0.2) methylated in at least one sample (fig. S32), but only approximately 10% of the tested 

methylation sites were progressively hyper- or hypo-methylated through prenatal windows, 

postnatal windows, or both. Similarly, a majority of methylation sites also exhibited regional 

variation, with 64% of tested sites differentially methylated between at least two brain regions at 

postnatal ages. Additionally, 16% of tested sites were differentially methylated between at least 

two neocortical areas. Conversely, a majority of putative promoters (66%) and a substantial 

proportion of putative enhancers (43%) were not differentially enriched between DFC and CBC 

at either fetal or adult ages. However, a greater proportion of putative enhancers (H3K27ac-

enriched regions not overlapping H3K4me3-enriched regions or proximal to a transcription start 

site; TSS) were regionally (15%), temporally (17%), or spatiotemporally (24%) enriched than 

putative promoters (8%, 14%, and 12%, respectively). These differences, which suggest a greater 

role for enhancers relative to promoters in contributing to differential spatiotemporal gene 

expression, were selectively validated using quantitative droplet digital PCR (fig. S10). We next 

explored correlations between methylation, histone modifications, and gene expression (figs. S32 

to S34). In the adult, we found that TSSs that were more highly methylated were associated with 

genes that were expressed at low levels at the corresponding age, and vice versa. These 

relationships were not strongly indicated for methylation at other locations in the gene body (fig. 

S32). The presence of CBC-enriched H3K4me3 and H3K27ac marks in the adult human brain also 

correlated strongly with increased gene expression in CBC relative to DFC (fig. S33), and vice 

versa. Similarly, putative fetal-active and adult-active enhancers were associated with higher fetal 

or adult gene expression, respectively.  

 In addition to epigenetic effects on gene expression, we observed discrete relationships 

between specific enhancers, methylation sites, and cell type specific signatures. For example, 
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enhancers identified during the fetal period were enriched for methylation sites that were 

progressively more methylated across postnatal ages (post-up) while adult-active enhancers were 

enriched for methylation sites that were progressively less methylated across postnatal ages (post-

down) (Fig. 5A and fig. S35, (22)). Both post-up and post-down sites were themselves depleted at 

TSSs and enriched for sites undermethylated in neurons (neuron undermethylated sites, or NUM 

sites) and undermethylated in non-neurons (non-NUM sites) (fig. S35). They were also enriched 

for fetal and adult enhancers, respectively (Fig. 5B). Post-up sites were also enriched in both 

neuron and glia-enriched-genes, while post-down sites were enriched only in glial genes (Fig. 5B). 

Further suggesting a relationship between enhancer activity, methylation, and cell type, genes 

associated with fetal-active enhancers, as well as those associated with differentially methylated 

regions (DMRs) composed of post-up sites (22), were enriched for Gene Ontology terms related 

to early events in neural development, such as neurogenesis, cell differentiation, and synaptic 

transmission, but generally not for processes occurring later in development (Fig. 5B and fig. S35). 

In contrast, genes near adult-active enhancers and post-down DMRs exhibited enrichment for 

postnatal or adult processes including myelination and axon ensheathment (Fig. 5B and fig. S35). 

Taken together, these data demonstrate relationships between gene expression and epigenetic 

modifications including methylation status and putative regulatory elements, as well as signatures 

of specific cell types and developmental programs. 

We next sought further evidence that cellular dynamics contributed to the late fetal 

transition through the analysis of cell type- and spatiotemporal-specific patterns of gene expression 

and epigenetic regulation. We curated 73 gene co-expression modules resulting from Weighted 

Gene Correlation Network Analysis (WGCNA) according to spatial relationships between brain 

regions and the temporal relationships of gene expression in the neocortex across the late fetal 
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transition (Fig. S36 and tables S10, S11). We found 44 modules that showed expression differences 

among regions in the brain (spatial), 40 modules that showed expression differences between 

prenatal and postnatal neocortical areas (temporal), 16 modules that were neither spatially nor 

temporally dynamic, and 27 modules that exhibited both spatial and temporal differences (Fig. 

5C). A significantly greater than expected number of these spatiotemporally dynamic modules 

(including Modules 2, 10, 32, and 37) exhibited their greatest change in neocortical expression 

from W2 through W5 (P<0.0118, Hypergeometric test) (Fig. 5C, fig. S37 and table S12). Genes 

whose expression was enriched in excitatory neurons, genes associated with putative fetal-active 

enhancers, and/or genes associated with NUM sites, a selection of characteristics we refer to 

collectively as Neuronal (N)-Type associations, were also enriched in spatiotemporal dynamic 

modules (P<0.0029, Hypergeometric test) (Fig. 5C, fig. S37 and table S12). Conversely, genes 

associated with adult-active enhancers, methylation sites hypomethylated in non-NUM sites, and 

glial genes (Glial or “G”-Type modules/associations in Fig. 5C, fig. S37 and table S12) were 

enriched among the 13 modules where temporal (P<0.0002, Hypergeometric test), but not spatial, 

specificity was observed. These observations indicate increased spatial diversity of neuronal cell 

types relative to glial cell populations.  

Analyses by sex revealed that modules enriched for the 783 genes exhibiting sex-

differential expression (sex-DEX, fig. S37) in at least two consecutive windows in at least one 

brain region were enriched among modules with no spatial or temporal differential expression in 

the neocortex (P<0.0029, Hypergeometric test) (Fig. 5C) and depleted among spatiotemporal 

modules (P<0.0021, Hypergeometric test). There were four modules exhibiting temporal 

expression differences in the neocortex that were also enriched for sex-biased genes, as well as 

glial and other cell type-enriched markers, but this did not represent a significant enrichment in 
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sex-DEX enriched modules among temporal modules (P<0.132, Hypergeometric test). In addition, 

no module comprised of autosomal genes exhibited persistent male- or female-dimorphism across 

both prenatal development and later postnatal ages such as adolescence or adulthood (Figs. S38, 

S39); in cases where an autosomal module was sex-DEX throughout development, the sex 

exhibiting higher expression reversed between early and late postnatal development (fig. S39). 

This observation was upheld when multiple thresholds were used for the identification of sexual 

dimorphism (fig. S40). Similarly, we identified no autosomal genes that exhibited sexual 

dimorphism throughout development in all brain regions or neocortical areas (figs. S38, S39).  

 

Cellular and temporal convergence of neuropsychiatric disease risks 

Loci implicated in several neuropsychiatric disorders have been identified through genome-wide 

association studies (GWAS) and are enriched in putative noncoding regulatory elements (29-31). 

We sought to determine whether the proportion of phenotypic variance explained by common 

SNPs in large neuropsychiatric GWAS (i.e., SNP heritability) was enriched in the cis-regulatory 

elements we identified at W1, W4, W5 and W9 in DFC and CBC. Towards this end, we collected 

GWAS data concerning neuropsychiatric disorders or personality traits including schizophrenia 

(SCZ) from CLOZUK (37), Alzheimer’s disease (AD) from IGAP (38), Parkinson’s disease (PD; 

(39)), autism spectrum disorder (ASD; (40)), attention deficit hyperactivity disorder (ADHD) from 

iPSYCH (41), major depression disorder (MDD; (42)), bipolar disorder (BD; (43)), IQ (44), and 

neuroticism (45), as well as non-neural traits such as height from GIANT (46), inflammatory 

bowel disease (IBD; (47)), total cholesterol levels (48), and an endophenotype associated with 

diabetes (HbA1C; (49)). Using partitioned LD score regression (pLDSC) analysis, we found that 

SNP heritability in SCZ, intelligence quotient (IQ), and neuroticism were exclusively enriched in 
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DFC-specific, but not CBC-specific, regulatory elements as identified by peak regions of H3K27ac 

activity. In contrast, SNP-heritability in AD or PD rendered no significant associations, and the 

analysis on ASD, ADHD, BD, and MDD was only nominally enriched or not enriched in putative 

region-specific fetal enhancers (Fig. 6 and fig. S41, (22)). Non-neural traits (such as height and 

diabetes) were also not enriched in either DFC- or CBC-specific regulatory elements, but were 

instead enriched in regulatory elements active in the two brain regions (fig. S41), indicating a 

general enrichment of many of our tested GWASes in H3K27ac regions when considering a set of 

more ubiquitous regulatory regions.  

After aggregating GWAS SNPs and identifying candidate associated regions on the basis 

of their P-values and linkage disequilibrium patterns in individuals of northwest European ancestry 

(50), we next leveraged partially overlapping Hi-C datasets, derived from mid-fetal and adult 

neocortex and processed by two independent research groups (51-53), as well as H3K27ac activity 

in the brain, to develop two lists of genes putatively associated with those GWAS-associated 

regions. To do so, we initially populated both lists of disease-associated genes by identifying TSSs 

overlapping H3K27ac peaks that themselves overlapped a GWAS significant region, as well as 

genes directly affected by GWAS significant variants within the LD-region, as predicted by 

EnsmbleV78. We next expanded these lists of disease-associated genes by identifying TSSs that 

interact with H3K27ac peaks overlapping GWAS significant regions, excluding interactions that 

did not overlap with at least one H3K27ac peak at each end or where peak-to-peak interactions 

were not concordant in time and brain region. In the first, less stringent list (List 1), a single 

interaction from either of the two Hi-C datasets was sufficient to associate a gene to a GWAS locus 

(table S13). For the second, more stringent list (List 2), we excluded those genes whose only 
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association to a GWAS locus was via Hi-C interactions identified in only one of the two Hi-C 

datasets (table S14). 

We next sought to determine the cell types enriched for the expression of the high-

stringency genes implicated in neuropsychiatric disorders or brain-based traits, using our prenatal 

scRNA-Seq and adult snRNA-Seq datasets, and matching prenatal and adult datasets generated 

from the macaque (34). We found numerous cell types enriched for disease-associated loci in both 

human and macaque (fig. S42). For example, neocortical excitatory neurons were enriched for the 

expression of genes we associated with IQ in both the fetal and adult human as well as the fetal 

and adult macaque. However, we found no other excitatory neuron populations in the macaque 

amygdala, striatum, hippocampus, thalamus, or cerebellum enriched for genes associated with IQ. 

Similarly, neural progenitors in the prenatal macaque amygdala, but not progenitors in the prenatal 

macaque hippocampus, thalamus, neocortex, or striatum, were enriched for the expression of genes 

associated with major depressive disorder, a finding especially intriguing given the variable or 

potentially increased size of some amygdalar nuclei in MDD patients (54, 55). Similarly 

confirmatory was the enrichment of schizophrenia risk genes in cortical excitatory neurons (56), 

with enrichment also observed in embryonic/fetal progenitor cells and adult cortical interneurons.  

Analysis of gene co-expression modules found that genes in the more stringent early onset 

disease (ADHD, SCZ, and MD) risk lists converged on 7 of 73 co-expression modules while adult 

onset disease (AD and PD) risk gene lists converged on 5 partially overlapping modules (fig. S37 

and table S12). 8 of these 10 total disease-associated modules (Fig. 7A) exhibited spatiotemporal 

or temporal specificity, and all modules exhibited their greatest spatiotemporal change either 

during W2 or W5 (fig. S37). A significant number of modules associated with adult onset disorders 

were enriched for signatures of glial gene expression (P<0.0266, Hypergeometric test, table S12), 
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and of particular interest were modules ME3 and ME7, which in addition to glial signatures were 

enriched for non-NUM sites, adult-active enhancers, sex-DEX genes, and AD-associated risk 

genes (Fig. 7A).  

Another module of interest was ME37, a module of 145 genes enriched for NUM sites and 

fetal enhancers, and whose expression was enriched specifically in neurons as opposed to neural 

progenitors or glia. ME37 was also exceptional for its disease association, as it was enriched for 

genes associated with SCZ, IQ, and neuroticism but not for non-neurological characteristics such 

as height or a diabetes-related trait (Fig. 7A). Complementary module-based association analysis 

with Multi-marker Analysis of GenoMic Annotation (MAGMA), testing for an enrichment in 

association to disease specifically around genes in any given module, confirmed enrichment for 

SCZ, IQ, and neuroticism in ME37 (MAGMA-P values<0.01; FDR for all traits and modules <0.3) 

(table S11). At the gene level, multiple genes in ME37 identified using our less stringent criteria 

for interaction were associated with up to four or more different traits and disorders, including 

MEF2C, ZNF184, TCF4, and SATB2, all genes critical for neurodevelopment and/or implicated in 

neurodevelopmental disorders (57-65) (Figs. 7B, 7C). We also found that ME37 was specifically 

enriched in clusters of excitatory neurons in the fetal and adult neocortex (Fig. 7D), and further 

analysis of adult excitatory neuron populations identified in this study and an independent database 

of adult single cell data (27) suggested this enrichment was selective for deep layer neocortical 

neurons (fig. S43). 

As the ASD GWAS resulted in only 13 significant genes, eight of which were non-protein 

coding, and because de novo germline mutations are known to significantly contribute to ASD risk 

(66), we next developed two non-overlapping lists of neurodevelopmental disorders (NDD; ASD, 

intellectual disability (ID), and developmental delay (DD)). The first list was comprised of 65 
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high-confidence ASD risk genes (hcASD) associated with de novo mutations (66). The second list 

included all ASD genes documented in the SFARI database (www.gene.sfari.org) under categories 

“Syndromic” or with scores from 1 to 4 as well as an independent list of genes associated with DD 

(67), with genes overlapping the hcASD list removed. We found that these genes were also 

significantly enriched in ME37 (FDR <0.0001, Fisher’s exact test), and commensurate with the 

cell type enrichment found in ME37, the expression of genes in both of these lists was also enriched 

in several clusters of fetal and adult excitatory neurons identified in our single cell dataset (Fig. 

7D). Medium spiny neurons in the striatum, a population that has also been previously linked to 

ASD (68), were also enriched for the expression of ASD risk genes in the prenatal macaque (Fig. 

7D). 

We finally studied the overlap between WGCNA modules and modules significantly 

enriched in differentially expressed genes in postmortem brains from patients of SCZ, BD, and 

ASD (69). Interestingly, we found little overlap between modules enriched in genes exhibiting 

postmortem differences in expression between SCZ, BD, or ASD, as compared to neurotypical 

controls, and modules enriched in GWAS-risk genes for these same disorders. Emphasizing the 

necessity of studying neurotypical brain development, these observations may suggest a 

decoupling between the primary genetic causes of some neurological or psychiatric disorders and 

second order effects manifesting as changes in gene expression months or years following disease 

onset. 

 

Discussion 

In this study, we have presented a comprehensive dataset and a multi-platform functional genomic 

analysis of the developing and adult human brain. The presence of these multiple data modalities 
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in a unified resource, and largely from the same tissue samples, allows the integration of 

information spanning prenatal and postnatal human brain development. Resource description and 

access are available at development.psychencode.org and brainspan.org. 

Although transcriptomic differences between distinct brain regions remain across time, 

they are developmentally specified and exhibit an overall cup-shaped pattern centered on a late 

fetal transition following a period of high intra- and inter-regional variation during embryonic and 

early/mid-fetal development. Multiple analyses of distinct transcriptomic features all confirm this 

transition begins well prior to birth. Our complementary transcriptomic study of the developing 

rhesus macaque brain (34) also revealed a similar global developmental pattern, with a first 

transition beginning prior to birth, indicating that this is a conserved feature of catarrhine primate 

neurodevelopment and not due to an artifact of difficult to acquire samples from late fetal and early 

postnatal development. Such a phenomenon is consistent with previously observed differences in 

transcriptomic and methylomic profiles of mid-fetal and postnatal human neocortex (17-20), and 

coincident with processes involved in region-specific cell type generation, differentiation, and 

maturation (2). Crucially, this transition is strikingly distinct from previously reported 

phylogenetic hourglass-like patterns that occur during the embryonic organogenetic period in 

several invertebrate and vertebrate species (70, 71). Moreover, the developmental (ontogenetic) 

cup-shaped pattern we observe coincides with an “evolutionary” (phylogenetic) cup-shaped 

pattern, where developmental periods exhibiting high levels of inter-regional differences (for 

example, early to mid-fetal periods) also exhibit less conservation in gene expression patterns 

between human and macaque (34).  

Among the processes becoming prominent during the late fetal period are astrogliogenesis, 

synaptogenesis, dendritogenesis, and neuronal activity. In contrast to a previous report of robust 
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areal differences in the progression of synaptogenesis during the same time period in humans (36), 

this and an accompanying study (34) found that genes associated with these processes exhibit 

largely synchronous expression trajectories across the developing neocortex in both humans and 

macaque. However, myelination, which sharply increases during late fetal development, peaks 

after birth, and extends through childhood and adolescence (72), is temporally asynchronous. This 

asynchronicity in oligodendrocyte development and myelination is not apparent at the level of 

OPCs, which suggests that the maturation of OPCs into myelinating oligodendrocytes is a process 

with a variable onset and pace across areas. Similar observations were made in macaque (34), 

indicating that this may be another conserved catarrhine feature.  

Transcriptomic variation may reflect several unique cellular and maturational 

reorganizational events. For example, as first described by Brodmann (73), an ontogenetic six-

layered Grundtypus foreshadows the adult neocortex and transiently transforms the entirety of the 

neocortical plate beginning in the late fetal period, or in our window 5. Furthermore, consistent 

with the extensive changes we observed in the cerebellar transcriptome during late fetal 

development and early postnatal ages, cerebellar granule cells, a cell type that represents 

approximately 2/3 of all neurons in the brain, are also generated predominately during this period 

(74). The late fetal transition may therefore follow an inflection point after which developmental 

and spatiotemporal transcriptomic variations are transiently consolidated in advance of the 

emergence of cellular and functional differences between adult brain regions.  

The mid-fetal period of high intra- and inter-regional divergence that immediately precedes 

the late fetal transition also coincides with a key developmental period previously associated with 

the etiology of ASD and SCZ (63, 65, 75). Consequently, understanding the developmental and 

evolutionary history of this period may be essential for understanding neuropsychiatric disease. 
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Integrating our multiple data modalities with gene co-expression modules allowed us to organize 

and characterize the whole brain developmental transcriptome and identify modules with dynamic 

spatiotemporal trajectories, many of them showing a sharp late-fetal transition, and enrichment in 

specific cell types, epigenetic activity, and disease-associated genes. Of particular interest is 

ME37, a module displaying the greatest rate of change in the neocortex within the late-fetal 

transition and in which putative risk genes for ASD, NDD, SCZ, IQ, and neuroticism converged. 

Several of the genes in ME37 were implicated by our study in multiple disorders and traits, and 

have been linked previously to neurodevelopment and human disease. For example, MEF2C 

controls activity-dependent expression of neuronal genes, including those linked to synapse 

function and ASD (61, 63), and Mef2c mutant mice display numerous behaviors reminiscent of 

ASD, ID, and SCZ (58). Similarly, TCF4 regulates key neurodevelopmental processes, such as 

neurogenesis and synaptic plasticity, DNA methylation, and memory function processes (62, 64). 

Moreover, mutations in both MEF2C and TCF4 result in intellectual disability in humans (57, 59, 

60). Numerous other genes in this module are similarly involved in neurodevelopment, have been 

implicated in human brain disease, and are highly plausible disease risk genes and potentially 

therapeutic candidates. For example, NR4A2, another transcription factor in ME37 that we linked 

to neuroticism and IQ, has been linked to ASD and SCZ, among other disorders. Our study also 

links the transcription factor TSHZ3 to neuroticism and IQ, and previous efforts have linked murine 

Tshz3 to ASD and the fetal development of cortical excitatory projection neurons (76), a cell type 

and developmental period also implicated in ASD (63, 65). Other genes in ME37, such as SATB2, 

FEZF2, SOX5, and TBR1, play critical roles in the development of cortical excitatory projection 

neurons and are mutated in NDDs (29-31, 65, 77, 78). Similarly, the population of genes included 

in ME37, as well as genes linked to ASD and NDD, also exhibit regional and cell type specific 
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convergence in neocortical excitatory neurons. Moreover, the identification of ME37 and the 

overlap of genes in this module with those implicated in ASD and NDD illustrates how disease 

association signals from common variants unveiled by GWAS for any given neuropsychiatric 

disorder can identify genes that have also been associated with the etiology of a different disease 

through the study of de novo mutations in patient populations (76). While not every gene in ME37 

is likely to contribute to neuropsychiatric disease etiology, the coincident enrichment within this 

module of genes associated with multiple disorders or neurological traits, along with the multitude 

of genes in this module that are associated directly, suggests that neuropsychiatric disease might 

be considered through a broader lens encompassing additional aspects of brain dysfunction.  

Interestingly, there is little overlap between the risk-gene associated modules we identified 

and modules enriched in genes that are differentially expressed in postmortem brains of SCZ, 

ASD, and BD, as compared to controls (69). This comparison may help discriminate gene 

networks that are primary causes from those that are secondary or reactive in these 

neuropsychiatric disorders while emphasizing the importance of studying disease in the context of 

neurotypical development.  

 Taken together, these observations demonstrate the utility of this resource to perform 

integrated analysis for the understanding of brain development and function, and for the rapid 

interpretation of findings from neuropsychiatric genomics. 

 

Materials and Methods 

A full description of the materials and methods is provided in the supplementary text. Briefly, we 

precisely dissected multiple brain regions (hippocampus, striatum, amygdala, cerebellum, 

thalamus, and 11 neocortical areas) in more than 60 postmortem human brains ranging in age from 
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5 PCW to 64 PY. We then applied bulk tissue RNA-Seq, single cell and nucleus RNA-Seq, small 

RNA-Seq, DNA methylation assay, or ChIP-Seq to generate multimodal datasets, often from the 

same brain. After applying stringent quality control checks and independent analysis of each data 

set, we performed integrated analyses to gain insights into human brain development, function, 

and disease.  
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Figure legends 

Fig. 1. Overview of the data generated in this study. (A) The developmental timespan of the 

human brain, from embryonic ages (≤ 8 PCW) through fetal development, infancy, childhood, 

adolescence, and adulthood, with PCW indicated in text and postnatal years indicated in bold text. 

Below, distribution of samples in this study across broad developmental phases (embryonic to 

adulthood), age (5 PCW to 64 PY (19)), and developmental windows (W1 – W9). Each circle 

represents a brain and color indicates the sex; red circles (female) and blue circles (male) (B) 

Postmortem human brains sampled for different data modalities in this study as indicated.  

 

Fig. 2. Global transcriptomic architecture of the developing human brain. (A) mRNA-Seq 

dataset includes 11 neocortical areas (NCX) and five additional regions of the brain. (B) First two 

multidimensional scaling components from gene expression showed samples from late fetal ages 

and early infancy (W5; gray) clustered between samples from exclusively prenatal windows (W1-

4; blue) and exclusively postnatal windows (W6-9; red). (C) Intra-regional Pearson’s correlation 

analysis found that samples within exclusively prenatal (W1-4) or postnatal (W6-9) windows 

correlated within but not across those ages. (D) Inter-regional transcriptomic differences revealed 

a developmental cup-shaped pattern in brain development. The inter-regional difference was 

measured as the upper-quartile of the average absolute difference in gene expression of each area 

compared to all other areas. (E) Principal component analysis adjusted for inter-individual 
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variation (AC-PCA) for samples from all brain regions at late mid-fetal ages (W4), late fetal ages 

and early infancy (W5), and early adulthood (W9) showed that inter-regional differences were 

generally greater during windows 4 and 9 but reduced across W5. (F) Pairwise distance across 

samples using the first two principal components for all regions (left), or excluding one region at 

a time (right), demonstrated that the reduction of variation we observed is common across multiple 

brain regions, once the most differentiated transcriptomic profile (the cerebellum) is excluded.  

 

Fig. 3. Dynamics of cellular heterogeneity in the human neocortex. (A) AC-PCA conducted on 

11 neocortical areas showed decreased inter-areal variation across W5, similar to our observations 

of inter-regional variation in major brain regions. (B) Pairwise distance across samples using the 

first two principal components identified a late fetal transition in all of the neocortical areas we 

assessed, similar to what we observed across other brain regions. (C) Deconvolution of tissue level 

data using cell type enriched markers identified through single cell sequencing of primary cells 

from 5 – 20 PCW postmortem human donor brain as well as from single nuclei sequencing of adult 

human brain (27). (D) Maximum inter-areal variance across cell types for each window. (E) 

Neocortical areal variation in the transcriptomic signatures of each major cell type assayed in each 

developmental window. Due to dissection protocols and rapid brain growth across early fetal 

development, progenitor cell proportions are nonreliable estimates after W2 (red dashed line). 

NPC: neural progenitor cells, ExN: excitatory neurons, InN: interneurons, Astro: astroglial lineage, 

Oligo: oligodendrocytes, Endo: endothelial.  

 

Fig. 4. Timing and temporal variation of genes expression associated with key 

neurodevelopmental processes. (A) Temporal variation, determined by the TempShift algorithm 
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(34), in the expression of genes associated with myelination showed a broad gradient across the 

neocortex and other brain regions while synaptogenesis showed only a shift between brain regions 

(but not neocortical areas) and neuronal activity indicated the distinct nature of the cerebellum. 

Application of the TempShift algorithm to previously published post-translational analyses of 

myelinated fiber density (35) (B) and synaptic density (36) (C) in multiple neocortical areas 

yielded relationships between areas similar to those observed in the transcriptome. (D) Expression 

of genes associated with assorted biological processes highlights pronounced change during the 

late fetal period and W5. (E) Variation in myelination-associated genes peaks during W5, as 

evidenced by the standard deviation of the fitted regional mean, driving inter-regional variation 

during this and neighboring (W4, 6) windows.  

 

Fig. 5. Integration of gene expression and epigenetic regulation with cell types and biological 

processes. (A) Fetal-active enhancers (top left) were generally enriched for sites where 

methylation progressively increased across postnatal ages and associated with genes whose 

expression was higher during fetal development than adulthood and whose expression was 

enriched in neurons as compared to glia. Conversely, adult-active enhancers were enriched for 

sites exhibiting progressively higher methylation across postnatal ages and depleted for 

associations with higher fetal gene expression or enriched in neurons. These enhancers were also 

enriched for gene ontology terms generally involving neurons and glia, respectively. (B) Sites 

where methylation progressively increased across postnatal ages and where methylation 

progressively decreased across postnatal ages were generally enriched for fetal enhancers and 

genes whose expression was enriched in neurons, or adult enhancers and genes whose expression 

was enriched in glia, respectively, as well as related gene ontology terms. (C) Modules identified 
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through Weighted Gene Correlation Network Analysis (WGCNA) were segregated by regulation 

across brain regions, prenatal and postnatal gene expression in the neocortex, both, or neither. 

Spatiotemporal modules (right) were enriched for modules that are themselves enriched for genes 

associated with enhancers active in the fetal DFC, associated with sites undermethylated in NeuN-

positive (neuronal) cells, and/or enriched in neurons (N-type associations). Temporal, non-spatial 

modules (second from left) were enriched for modules that are themselves enriched for genes 

associated with enhancers active in the adult DFC, associated with sites undermethylated in non-

NeuN-positive (non-neuronal) cells, and/or genes enriched in glia (G-type associations). Modules 

exhibiting no spatial or temporal specificity (left) were enriched for genes exhibiting sex-biased 

gene expression across neocortical development. Full circles (grey) indicate the proportion of 

modules in each category of modules exhibiting their greatest rate of change in windows 1 through 

9 

 

Fig. 6. Enrichment analysis for GWAS loci among putative regulatory elements. Putative 

promoters and enhancers (H3K27ac peaks) specific for DFC or CBC in the fetal, infant, or adult 

were enriched for SNP heritability identified through partitioned LD score regression analysis 

from Genome Wide Association Studies (GWAS) for autism spectrum disorder (ASD;(40)), 

attention-deficit hyperactive disorder (ADHD; (41)), schizophrenia (SCZ; (37)), major depressive 

disorder (MDD; (42)), bipolar disorder (BD; (43)), Alzheimer’s disease (AD; (38)), Parkinson’s 

disease (PD; (39)), IQ; (44), or neuroticism (Neurot; (45)) but not for non-neural disorders or traits 

such as height (HGT; (46)) or diabetes (HBA1C; (49)). Solid color indicates significance for 

Bonferroni adjusted P-value and faint color indicates nominal significance at LDscore regression 

P<0.05. 
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Fig. 7. Convergence of risk for brain-based traits and disorders on discrete co-expression 

modules and cell types. (A) Genes associated with disease risk (right; light yellow indicates 

neuropsychiatric disorder or brain-based trait; dark yellow indicates adult-onset disorder) were 

identified by integrating GWAS, Hi-C, and H3K27ac data and converged on 10 WGCNA 

modules. Many of these modules exhibited dynamic expression across time; bold rectangle in left 

of panel A indicates the window with greatest rate of change. Many were also enriched for gene 

expression associated with distinct cell types (orange), putative active enhancers (green), and/or 

sites undermethylated in NeuN-positive (NUM) or NeuN-negative cells (blue; non-NUM). (B) 

Schematic highlighting genes in ME37 that were implicated by our study in multiple 

neurodevelopmental disorders (ADHD, SCZ, MDD, or BD) and neurological traits (IQ or 

NEUROT), as well as neurodevelopmental disorder risk genes (NDD) including two independent 

lists of high-confidence risk genes associated with ASD through de novo mutations or copy 

number variants (dark blue; (66)) as well as ASD risk genes identified from the SFARI dataset 

(light blue; www.gene.sfari.org) or for developmental delay (67); genes implicated in only a single 

disorder or trait are not shown in this panel. (C) Network representation of module 37 showing 

connectivity between genes based on Pearson correlation. Genes linked to neurodevelopmental 

disorders or neurological characteristics in our study are indicated using either dark blue-shaded 

hexagons, indicating they are associated with the NDD list and/or List 2, or light blue-shaded 

hexagons, indicating genes only present List 1. The size of a given hexagon (or circle, indicating 

no association in this study) is proportional to the degree of each gene under a minimum correlation 

value of 0.7. (D) Enrichment for genes in ME37 or two lists of ASD risk genes among the fetal 

and adult cell types we identified from human neocortex and multiple regions of the macaque (34) 
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brain. ExN: excitatory projection neurons, InN: inhibitory interneurons, Astro: astroglial lineage, 

Oligo: oligodendrocytes, Endo: endothelial. MSN: medium spiny neurons, NasN: nascent neurons, 

GraN: granule neurons, PurkN: Purkinje neurons, IPC: intermediate progenitor cells, OPC: 

oligodendrocyte progenitor cells. 
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Materials and Methods 

In this Supplementary Information, we provide further information regarding the study design, 

materials and methods, and additional data. The materials and methods section provide detailed 

description of the collection, dissection methods, and quality control assessments of postmortem 

human brain tissue used in this study. We provide technical descriptions of data generation and 

analyses.  

 

1. Tissue	procurement	 

This study was conducted using postmortem human brain specimens from tissue collections at the 

Department of Neurobiology at Yale University School of Medicine and the Clinical Brain 

Disorders Branch of the National Institute of Mental Health. Additional specimens were procured 

from the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM), 

the Brain and Tissue Bank for Developmental Disorders at the University of Maryland, the Birth 

Defects Research Laboratory at the University of Washington, Advanced Bioscience Resources 

Inc. and the MRC-Wellcome Trust Human Developmental Biology Resource at the Institute of 

Human Genetics, University of Newcastle, UK. Tissue was collected after obtaining parental or 

next of kin consent and with approval by the institutional review boards at the Yale University 

School of Medicine, the National Institutes of Health, and at each institution from which tissue 

specimens were obtained. Tissue was handled in accordance with ethical guidelines and 

regulations for the research use of human brain tissue set forth by the NIH 

(http://bioethics.od.nih.gov/humantissue.html) and the WMA Declaration of Helsinki 

(http://www.wma.net/en/30publications/10policies/b3/index.html). 
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All available non-identifying information was recorded for each specimen. 60 postmortem brain 

specimens ranging in age from 5 post-conception weeks (PCW) to 64 postnatal years (PY) (Fig. 1 

and table S1) were included in this study. Fetal age was extrapolated based on the date of the 

mother’s last menstruation, characteristics of the fetus noted upon ultrasonography scanning, foot 

length of the fetus, and visual inspection. The postmortem interval (PMI) was defined as hours 

between time of death and time when tissue samples were frozen. 

 

2. Brain	regions	and	neocortical	areas	definition 

Brain development is a highly dynamic process during which each region undergoes distinct 

organizational and maturational changes. Thus, we created a structural ontology that contains brain 

structures (e.g., NCX areas, HIP, AMY, STR, MD, CBC) that are well defined throughout most 

of time periods, and several transient structures (e.g., MGE, LGE, CGE, URL). In total, 10 regions 

for 5 - 9 PCW (window 1) specimens, and up to 16 regions for all ages after 9 PCW (windows 2- 

9). Regions and areas were as described in Kang et al but are noted here again for comprehensive 

description of methods (19). Below we describe this ontology and anatomical definition of 

sampled brain regions and NCX areas based on histological verification. 
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2.1. Cerebrum 

2.1.1. Neocortex	(NCX) 

Samples collected from 8 – 9 PCW specimens contained the entire thickness of the cerebral wall. 

Samples collected from 12 – 22 PCW specimens contained the marginal zone, cortical plate, and 

part of the underlying subplate. Samples from 35 PCW – 40 PY specimens were dissected such 

that the entire gray matter (layer 1-6) and part of the underlying subplate (4- 12 M) or white matter 

(1 – 40 PY) were collected. Nissl staining of the neighboring thin block was used to histologically 

verify the identity of the dissected area and to microscopically evaluate tissue. Neocortical 

cytoarchitecture of each sample was compared to a real cytoarchitectonic maps to distinguish 

Brodmann areas (BA) (73). Samples with incorrect cytoarchitecture or abnormal microscopical 

appearance were excluded from the study. Neocortical areas (see below) were grouped according 

to the lobes from which they were sampled. 

 

2.1.1.1. Frontal	cortex 

For 8 – 9 PCW specimens, the sampled area corresponded to different parts (orbital (OFC), 

dorsolateral (DFC, aka DLPFC), ventrolateral (VFC), and medial (MFC) of the anterior part of 

telencephalic vesicle (cerebral wall) corresponding to prospective FC. In addition, paracentral 

region corresponding approximately to the prospective motor and parietal somatosensory 

(M1C/S1C) cerebral wall was dissected as one sample (MSC).  

 

For 12 – 22 PCW specimens, prior to the appearance of all gyri and sulci, multiple areas of the FC 

were sampled as follows:  
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• Orbital prefrontal cortex (OFC) was sampled from the middle part of the orbital surface of 

the cerebral hemisphere, immediately next to the prospective gyrus rectus. 

• Dorsolateral prefrontal cortex (DFC) was sampled from the middle third of the dorsolateral 

surface of anterior third of the cerebral hemisphere. 

• Ventrolateral prefrontal cortex (VFC) was sampled from the posterior part of the frontal 

operculum, above the lateral sulcus and prospective insula. 

• Medial prefrontal cortex (MFC) was sampled from the perigenual and subgenual region of 

the medial surface. 

• Primary motor cortex (M1C), prior to the appearance of the central sulcus, was sampled 

from the anterior third of the middle third of the cerebral hemisphere, medial third and upper part 

of the lower third of the dorsolateral surface. The striatum at the septal level was used as the 

landmark between the anterior and middle one third of the dorsolateral cortical surface. In some 

cases, M1C and S1C areas were sampled as single area and termed it motor-somatosensory cortex 

(M1C/S1C) due to the lack of clear anatomical and histological boundaries between immature 

M1C and S1C. After the appearance of the central sulcus M1C was sampled in front of the central 

sulcus from the middle and upper part of the lower third of the dorsolateral surface of the 

hemisphere. 

 

For 35 PCW – 40 PY (64 PY for DFC) specimens, sampled areas were as follows: 

 

• OFC was sampled from the anterolateral two thirds of the orbital gyri. OFC corresponds 

approximately to BA 11.  



52 
 

• DFC was sampled from approximate border between the anterior and middle third of the 

medial frontal gyrus. DFC corresponds approximately to BA 9 and 46.  

• VFC was sampled from the posterior third of the inferior frontal gyrus, corresponding to 

the opercular and triangular part of the inferior frontal gyrus. VFC corresponds approximately to 

BA 44 and 45.  

• MFC was sampled from perigenual and subgenual parts of the anterior cingulate gyrus and 

the anteromedial part of the superior frontal gyrus. MFC corresponds approximately to BA 24, 32 

and 33.  

• M1C was sampled from the ventrolateral part of the precentral gyrus, corresponding most 

closely to the orofacial region of M1C. M1C corresponds to BA 4. 

 

2.1.1.2. Parietal	cortex	 

For 8 – 9 PCW specimens, the sampled areas included the paracentral region corresponding 

approximately to the prospective motor and parietal somatosensory (M1C/S1C) cerebral wall, and 

the posterior half of the dorsal middle third of the cerebral wall corresponding approximately to 

the prospective inferior parietal cortex (IPC). 

 

For 12 – 22 PCW specimens, prior to the appearance of gyri and sulci, multiple areas of the PC 

were sampled as follows: 

 

• Primary somatosensory cortex (S1C), prior to the appearance of the central sulcus, was 

sampled immediately caudal to the M1C (see M1C description above). After the appearance of the 
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central sulcus, S1C was sampled behind the central sulcus from the middle and upper part of the 

lower third of the dorsolateral surface of the cerebral hemisphere adjacent to the M1C area. 

• Posterior inferior parietal cortex (IPC) was sampled from the lower posterior part of the 

dorsolateral surface of the middle third of the cerebral hemisphere adjacent to the end of the lateral 

sulcus. 

 

For 35 PCW – 40 PY specimens, sampled areas were as follows: 

• S1C was sampled from the ventrolateral part of the postcentral gyrus adjacent to the M1C 

area. S1C corresponds to BA 1–3. 

• IPC was sampled from the posterior half of the supramarginal gyrus. IPC corresponds 

approximately to BA 40. 

 

2.1.1.3. Temporal	cortex 

For 8 – 9 PCW specimens, the sampled areas included the posterior two thirds of TC corresponding 

approximately to the prospective auditory and superior temporal cortex (A1C/STC) cerebral wall, 

and the anterior third corresponding approximately to the prospective inferior temporal cortex 

(ITC). 

 

For 12 – 22 PCW specimens, prior to the appearance of gyri and sulci, multiple areas of the TC 

were sampled as follows: 

• Primary auditory cortex (A1C) was sampled from the upper part of the temporal bank of 

the lateral sulcus. 
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• Posterior superior temporal cortex (STC) was sampled from the upper part of the superior 

third of the temporal lobe adjacent to the lateral sulcus and A1C area. 

• Inferior temporal cortex (ITC) was sampled from the lower part of the inferior third of the 

temporal lobe adjacent to the temporal lobe pole. 

 

For 35 PCW – 40 PY specimens, sampled areas were as follows: 

• A1C was sampled from the planum temporale and the transverse temporal gyri. A1C 

corresponds to BA 41.  

• STC was sampled from the posterior third of the superior temporal gyrus. STC corresponds 

approximately to BA 22.  

• ITC was sampled from the anterior third of the inferior temporal gyrus. ITC corresponds 

approximately to BA 20. 

 

2.1.1.4. Occipital	cortex 

 

For 8 – 9 PCW specimens, sampled tissue corresponded to the posterior (occipital) part of the 

cerebral wall.  

 

For 12 – 22 PCW specimens, prior to the appearance of gyri and sulci, sampled tissue corresponded 

to prospective primary visual cortex (V1C). Prior to the appearance of the calcarine fissure, V1C 

was sampled from the posterior third of the medial wall of the prospective occipital lobe. After 

appearance of the calcarine fissure, V1C was sampled as described below. 
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For 35 PCW – 40 PY specimens, V1C was sampled from the area surrounding the calcarine fissure. 

Only samples in which the stria of Gennari could be recognized were included. V1C corresponds 

to BA 17. Small pieces of the neighbouring BA 18 could have been occasionally present in the 

sample, but the majority of the sample corresponded to BA 17. 

 

2.1.2. Hippocampus	(HIP) 

For 8 – 9 PCW specimens, HIP was sampled from the hippocampal anlage, located on the 

ventromedial side of the cerebral hemisphere.  

 

For 12 PCW – 40 PY, HIP was sampled from the middle third of the retrocommissural 

hippocampal formation, located on the medial side of the temporal lobe. Sampled areas always 

contained dentate gyrus and the Ammon’s horn. Samples dissected from the frozen tissue may 

contain small quantities of the neighboring choroid plexus. 

 

2.1.3. Amygdala	(AMY) 

For 12 PCW – 40 PY specimens, at the aim was to dissect the whole AMY. Potentially very small 

quantities of surrounding white matter and other surrounding structures in the basal telencephalon 

were included in samples. 

 

2.1.4. Striatum	(STR) 

For 8 – 9 PCW specimens, the Medial ganglionic eminence (MGE), Lateral ganglionic eminence 

(LGE) and caudal ganglionic eminence (CGE) were sampled separately. Small quantities of 

surrounding tissue may be included in the samples. 
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For 12 PCW – 40 PY specimens, striatum (STR) was sampled as follows: the anterior part of 

striatum containing the head of the caudate nucleus and the putamen were dissected, separated by 

the internal capsule and ventrally connected to the nucleus accumbens. Small quantities of 

surrounding white matter are included in the samples. 

 

2.2. Thalamus	(MD) 

For 8 – 9 PCW specimens, the sampled region corresponds to the dorsal part of the thalamic anlage 

(DTH). 

 

For 12 PCW – 40 PY specimens, the whole mediodorsal nucleus of the thalamus (MD) was 

sampled from the dorsal and medial thalamus. Small quantities of surrounding thalamic nuclei 

could be present in the samples.  

 

2.3. Cerebellar	cortex	(CBC) 

For 8 – 9 PCW specimens, region corresponding to the upper (rostral) rhombic lip and adjacent 

tissue located above the upper rhomboid fossa were dissected. 

 

For 12 PCW – 40 PY specimens, CBC was sampled from the lateral part of the posterior lobe. The 

sampled area contained all three layers of cerebellar cortex and underlying white matter but not 

the deep cerebellar nuclei. CBC approximately corresponds to the lateral pontocerebellum. 

 

3. Tissue	dissection 
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Depending on the condition and period of the procured specimens, four different dissection 

methods were used. Photos and/or video were used to document dissections using digital cameras. 

Regions of interest were matched between different specimens, ages, and hemispheres of each 

brain. Specific dissection protocol depended upon the period of the specimen and the method by 

which it was preserved. For all brain specimens procured at Yale University School of Medicine 

and the Human Fetal Tissue Repository at AECOM, brain regions and NCX areas of interest were 

collected from fresh tissue. For all other specimens, regions/areas were collected from frozen tissue 

slabs or whole specimens stored at -80 ºC. To ensure consistency between specimens, all 

dissections were performed by the same person. Small samples of fresh or frozen CBC were used 

to measure tissue pH.  

 

3.1. Tissue	dissection	methods	 

Different dissection procedures were used for each specimen, depending upon the period of the 

brain (see below). Our pilot experiments indicated that the quality of RNA and DNA was largely 

unaffected by variation between the dissection methods used. 

 

3.1.1. Regional	sampling	from	fresh	brain	specimens 

Brains were chilled on ice for 15–30 minutes prior to sectioning. Brains were placed ventral side 

up onto a chilled aluminium plate (1 cm thick) on ice. The brainstem and cerebellum were removed 

from the cerebrum by making a transverse cut at the junction between the diencephalon and 

midbrain. Next, the cerebrum was divided into left and right hemispheres by cutting along the 

midline using a Tissue-Tek Accu-Edge trimming blade, 260 mm. The cerebellum was separated 

from the brainstem by cutting directly posterior to the brainstem, along the cerebellar peduncles. 
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The regions of interest were dissected using a scalpel blade and immediately frozen in liquid 

nitrogen. Dissected samples were either immediately processed for RNA extraction or stored at -

80 °C for later RNA extraction. The remaining brain tissue was cut to obtain 1 cm (specimens 

from 16 PCW) or 0.5 cm (12 – 13 PCW specimens) thick serial, coronal sections. The tissue slabs 

were snap frozen in isopentane (J.T. Baker)/dry ice at -30 to -40 ºC and stored at -80 ºC. 

 

3.1.2. Regional	sampling	from	frozen	brain	specimens	 

All previously frozen 12 PCW – 40 PY specimens and tissue slabs were microscopically inspected 

and the desired region was demarcated, then dissected using a dental drill (AnyXing, 300D) and a 

Lindemann Bone Cutter H162A.11.016 or diamond disk saw (Dental Burs USA; r=11 mm) on a 

1 cm thick aluminium plate over dry ice. Dissected tissue samples were stored at -80 ºC prior to 

further processing. 

 

3.1.3. Regional	sampling	from	specimens	processed	in	RNAlater	ICE 

8 – 9 PCW frozen specimens were sectioned coronally at approximately 2 mm, beginning at the 

frontal pole, using a dental diamond disk saw. For gradual thawing, tissue slabs were transferred 

from -80 °C storage to overnight storage in RNAlater ICE (Ambion) at -20 °C. Tissue slabs were 

visually inspected for gross anatomical neuropathological abnormalities. Next, regions of interest 

were sampled under a dissection microscope at 4 °C and stored in Buffer RLT Plus from the 

RNeasy Plus Mini Kit (Qiagen) at 4 °C. RNA was immediately extracted. 

 

3.2. Histological	verification	of	tissue	sampling	 
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To verify that the region or NCX area of interest is properly and consistently sampled, we also 

collected small tissue blocks, from both frozen and fresh brain specimens, adjacent to the tissue 

sample dissected for the RNA extraction. We have done this for the majority of M1C, S1C, IPC, 

A1C and V1C samples, which in our experience were hard to match across different specimens 

but can be histologically verified using Nissl method in postnatal specimens due to 

cytoarchitectonic differences. This method was also occasionally used for other regions or NCX 

areas. These tissue blocks were then fixed in 4% paraformaldehyde for 48 h, sectioned at 50 µm 

thickness using a vibratome, and Nissl stained to verify the identities of dissected adjacent tissue. 

 

3.3. Dissection	scoring	 

We developed a scoring system to evaluate the precision of how well the sampled region/area was 

represented at the same position of corresponding samples of the same period. 

 

Score description 

● 1 or 2: The region/area of interest was absent (1) or largely absent (2) and thus not collected. 

● 3: The region/area of interest was not complete but was of suitable quality to collect. 

● 4: The region/area of interest was largely intact but was not histologically verified or could 

not be collected at precisely the same position from which the corresponding contralateral 

sample was collected.  

● 5: The region/area of interest was fully intact, verified by gross inspection or Nissl staining 

(NCX areas), and collected at precisely the same position as corresponding samples of the 

same period. 
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3.4. Tissue	pulverization 

To ensure proper representation of the region of interest, frozen tissue samples were pulverized in 

liquid nitrogen using a ceramic mortar and pestle (Fisher Scientific, cat# 12-961C and 12-961-5C). 

Pulverized samples were transferred to chilled wide-mouth cryogenic vials (Nalgene, cat# 03-337-

7B) and stored at -80 ºC until used for RNA extraction. 

 

4. RNA	sample	preparation	and	sequencing 

4.1. RNA	extraction 

RNA was extracted using RNeasy Plus Mini Kit (Qiagen) for mRNA and mirVana kit (Ambion) 

for small RNA. Either approximately 30 mg of pulverized tissue (12 PCW – 40 PY specimens) or 

entire amount of dissected brain piece (8 – 9 PCW, smaller than 30 mg) was processed. Tissue 

was pulverized with liquid nitrogen in a chilled mortar and pestle and transferred to a chilled safe-

lock microcentrifuge tube (Eppendorf). Per tissue mass, equal mass of chilled stainless steel beads 

(Next Advance, cat# SSB14B) along with two volumes of lysis buffer were added. Tissue was 

homogenized for 1 min in Bullet Blender (Next Advance) at speed 6 and incubated at 37°C for 5 

min. Lysis buffer up to 0.6 ml was again added, tissue homogenized for 1 min and incubated at 

37°C for 1 min. Extraction was further carried out according to manufacturer’s protocol. Genomic 

DNA was removed by a proprietary column provided in RNeasy Plus Mini Kit (Qiagen) or by 

DNase treatment using TURBO DNA-free Kit (Ambion/ Life technologies). 260:A280 ratio and 

RNA Integrity Number (RIN) were determined for each sample with NanoDrop (Thermo 

Scientific) and Agilent 2100 Bioanalyzer system, respectively. 

 

4.2. mRNA-Sequencing	library	preparation 
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The mRNA-Sequencing (mRNA-Seq) Sample preparation Kit (Illumina) was used to prepare 

cDNA libraries per manufacturer instructions with some modifications. Briefly, polyA RNA was 

purified from 1 to 5 µg of total RNA using Oligo (dT) beads. Quaint-IT RiboGreen RNA Assay 

Kit (Invitrogen) was used to quantitate purified mRNA with the NanoDrop 3300. Following 

mRNA quantitation, 2.5 µl spike-in master mixes, containing five different types of RNA 

molecules at varying amounts (2.5 × 10-7 to 2.5 × 10-14 mol), were added per 100 ng of mRNA 

(79). Spike-in RNAs were synthesized by the External RNA Control Consortium (ERCC) by in 

vitro transcription of de novo DNA sequences or DNA derived from B. subtilis or the deep-sea 

vent microbe M. jannaschii and were a generous gift of Dr. Mark Salit at The National Institute of 

Standards and Technology (NIST). Each sample was tagged by adding two spike-in RNAs unique 

to the region from which the sample was taken. Besides, three common spike-in RNAs with 

gradient concentrations were added to each sample, aiming at the assessment of sequencing quality 

(table S10). Spike-in sequences are available at 

http://archive.gersteinlab.org/proj/brainseq/spike_in/spike_in.fa. The mixture of mRNA and 

spike-in RNAs was subjected to fragmentation, reverse transcription, end repair, 3’ end 

adenylation, and adapter ligation to generate libraries of short cDNA molecules, followed by PCR 

amplification. The PCR enriched product was assessed for its size distribution and concentration 

using Bioanalyzer DNA 1000 Kit. 

 

4.3. smallRNA-Sequencing	library	preparation 

The TruSeq Small RNA Sample Kit (Illumina) was used to prepare libraries for small RNA-

Sequencing (smRNA-Seq) per manufacturer instructions. Briefly, 1 µg of total RNA was ligated 

with 3’- and 5’- adapters, followed by reverse transcription and PCR amplification. Unique index 
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sequence tags were introduced during PCR to enable multiplexed sequencing. Each library was 

assessed for the presence of desired micro RNA population and quantity by Bioanalyzer High 

Sensitivity DNA Kit. 21 samples (16 samples from one brain and 5 technical replicates) were 

pooled and size selected for fragments between 145-160 bp, including the ligated 5’ and 3’ 

adapters, by gel excision. The extracted product was assessed for its size distribution and 

concentration using Bioanalyzer DNA 1000 Kit. 

 

4.4. Sequencing 

The mRNA-Sequencing was carried out on Illumina Genome Analyzer IIx (GAIIx), loading one 

sample per lane. Each flow cell was run for 76 cycles using a single-read recipe (v4 sequencing 

kits) according to the manufacturer's instructions.  

 

The small RNA-Sequencing was done on Illumina HiSeq 2000 by loading 21 samples per lane. 

The HiSeq flow cell was run for 50 cycles using a single-read recipe (v2 sequencing kit) according 

to the manufacturer's instructions. 

 

A total of 607 samples, 16 brain regions from 41 post-mortem individuals, which passed stringent 

tissue quality measures, including postmortem interval (PMI) = 12.9 ± 10.4 (hours); tissue pH = 

6.5 ± 0.3; and RNA integrity number (RIN) = 8.8 ± 1 (table S1) were subjected to profiling by 

mRNA- and smRNA-Seq. For mRNA-Seq, 16 billion uniquely mapped reads (26.5 ± 8.6 million 

per sample) were generated (table S1), accounting for ~20,000X coverage of human transcriptome. 

For smRNA-Seq, 1.9 billion reads (6.9 ± 2.7 million per sample) were generated (table S2).  
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5. DNA	methylation	 

5.1. DNA	extraction 

Genomic DNA was isolated using the DNeasy Blood and Tissue kit (Qiagen). In detail, 

approximately 25 mg of brain tissue from each brain region was lysed in Buffer ATL supplemented 

with proteinase K at 56˚C for 3 to 4 hours. If necessary, tissue was homogenized with a pellet 

pestle motor homogenizer (Kontes) before adding Proteinase K. Genomic DNA was purified from 

the lysate by passing it through the column provided in the kit. The DNA was eluted with 200ul 

of AE buffer. The concentration of the DNA was measured using the PicoGreen dsDNA assay kit 

(Invitrogen) on a NanoDrop (Thermo Scientific). DNA quality was assessed by visualization on 

2% agarose gels. 

 

5.2. Bisulfite	conversion 

Bisulfite treatment of the DNA using Zymo Research EZ DNA Methylation kit (D5001) was 

carried out at the USC Epigenome Center. Briefly, 500 ng of DNA was bisulfite treated by 

incubating in the dark at 50˚C for 12-16 hours with CT Conversion Reagent provided in the kit. 

Each sample was purified on the column provided in the kit. C to T converted DNA was eluted 

with 10 µl of M-Elution Buffer in the kit. 

  

5.3. Illumina	Infinium	HumanMethylation450	BeadChip 

Further steps of DNA amplification, fragmentation, hybridization, single base extension and signal 

detection were performed at the USC core facility, according to standard Illumina protocols. The 

signals were imported into Illumina’s GenomeStudio software. Two samples were discarded at 
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this stage because of detectable drop-outs (an indicator suggestive of poor quality) as measured by 

standard Illumina metrics.  

 

6. ChIP	and	sequencing 

6.1. Chromatin	isolation 

DFC and CBC were used for ChIP-Seq. Due to tissue limitations, tissues from the right and left 

hemispheres, when available, were pooled. Dissected tissue was pulverized in liquid nitrogen using 

a ceramic mortar and pestle and cross-linked with formaldehyde at a final concentration of 1% for 

15 minutes at room temperature. Cross-linking was quenched by adding glycine to a final 

concentration of 125 mM and tissue was washed twice in ice-cold 1X Dulbecco’s PBS (Sigma-

Aldrich, P5368). Tissue was then dounced in ice-cold 1X-PBS and centrifuged to obtain a pellet 

of single cells. To isolate nuclei, the cell pellet was first incubated in Lysis buffer 1 (50 mM 

HEPES-KOH, pH 7.5; 140 mM sodium chloride; 1 mM EDTA, pH 8; 10% glycerol; 0.5% NP-40; 

0.25% TritonX-100; 1X protease inhibitor cocktail) on a rotator at 4 C, followed by incubation in 

Lysis buffer 2 (200 mM sodium chloride; 1 mM EDTA, pH 8; 0.5 mM EGTA, pH 8; 10 mM Tris-

HCl, pH 8; 1X protease inhibitor cocktail) at RT, with a centrifugation step after each incubation. 

Nuclei in second pellet were lysed by suspending in Lysis buffer 3 (1 mM EDTA, pH 8; 0.5 mM 

EGTA, pH 8; 10 mM Tris-HCl, pH 8; 20% Sarkosyl; 1X protease inhibitor cocktail). Chromatin 

was sonicated to sizes between 200 bp and 500 bp with Misonix 4000 (S-4000). 

 

6.2. Immunoprecipitation 

Antibodies validated and used in ENCODE studies (80) were used in this study: Millipore - 

H3K4me3 (07-743), and Abcam – H3K27ac (ab4729). For each ChIP reaction, 50ul of washed 
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Dyna Protein G beads (Invitrogen, 10004D) were incubated with 5 µl of the respective antibody 

for 12 h at 4 ˚C. Beads were washed thrice with ice-cold BSA solution (5 mg/ ml BSA in 1X PBS), 

once with 1X TE, and then suspended in 50 µl of ice-cold BSA solution. 50 µg of the sheared 

chromatin was added to beads and the mixture was incubated for at least 16 h at 4 ˚C. Dynabeads 

were washed at room temperature eight times with RIPA buffer (50 mM HEPES, pH 8; 1 mM 

EDTA, pH 8; 0.7% deoxycholate; 1% NP-40; 0.5 M lithium chloride; 1X protease inhibitor 

cocktail) and once with 1X TE. Immunoprecipitated chromatin was eluted in 200 µl of Elution 

buffer (20% SDS in 1X TE) at 65˚C for 15 minutes, with occasional vortexing. The eluted protein-

chromatin complex was reverse cross-linked by overnight incubation at 65˚C. ChIPped and input 

DNA were treated with RNaseA (Sigma-Aldrich, R4875), Proteinase K (Denville Scientific Inc, 

CB3210-7) and purified with a Qiagen purification kit (Qiagen, 28104). 

   

6.3. ChIP-Seq	library	preparation	and	sequencing 

For adult samples, 5 ng of the purified immunoprecipitated DNA was used to prepare sequencing 

libraries for the Illumina sequencing platform. Sequencing libraries were generated using the 

ChIP-Seq DNA sample prep kit (Illumina, IP-102-1001) according to the manufacturer’s protocol 

with some modifications, as follows. DNA fragments were end-repaired and adenylated, as per 

manufacturer’s instructions. In order to reduce the free adaptor dimers that can be preferentially 

amplified during PCR, a 1:40 dilution of the adaptor was used instead of the recommended 1:10 

dilution. The recommended gel purification step was performed after DNA fragments were 

enriched with PCR amplification. DNA fragments between 250bp and 350bp were size selected 

by gel electrophoresis and band excision. During gel extraction, the gel was melted at room 
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temperature, instead of 50˚C. For multiplexing, index primers from the Multiplexing Sample 

Preparation Oligonucleotide Kit (Illumina, PE-400-1001) were used.  

 

For fetal and infant samples, 5 ng of the purified immunoprecipitated DNA was used to prepare 

sequencing libraries using the TruSeq ChIP Library Prep Kit (Illumina, IP-202-1012) according to 

the manufacturer’s protocol with the following modification. The recommended gel purification 

step was performed after DNA fragments were enriched with PCR amplification.  

 

Sequencing of the libraries was carried out at the Yale Center for Genome Analysis using either 

an Illumina Genome Analyzer IIx (GAIIx) or an Illumina HiSeq 2000 (adult samples) and an 

Illumina HiSeq 2500 (fetal/ infant samples). 

 

6.4. Quantitative	PCR	followed	by	chromatin	immunoprecipation	(ChIP-qPCR) 

Independent ChIP was carried out as described above. Selected regions were tested for enrichment 

by droplet digital PCR (QX100™ Droplet Digital™ PCR System, Bio-Rad). The primer-probe 

pairs used are listed in Supplementary table 16. Each reaction included 500 pg of 

immunoprecipitated DNA or input DNA, 500 nM each primer, 250 nM of the probe and 1X ddPCR 

Master mix (Bio-Rad). Droplets were generated and DNA was PCR amplified as follows: 95ºC/10 

minutes, (95 ºC/30 s, 60 ºC/ 1 min) x 40 cycles, 98 ºC/ 2 minutes. The PCR plate was read in a 

droplet reader (Bio-Rad) and the absolute values obtained by QuantaSoft analysis software. 

Enrichment was calculated as percentage of input (%IP). Three independent PCR reactions were 

carried out for each target region and the error bars indicate the standard error of the mean. 
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7. Single	cell	RNA-Seq 

7.1. Tissue	dissociation 

 

Brains from donors from 5 PCW to 64 PY were dissected as described in section 2 in accordance 

with samples ages. Fresh human brain tissue was transferred from hibernate into a tube with 37 ºC 

pre-warmed standard Papain protease and DNAse (PPD) solution. The mix was pipetted with a 

wide-bore pipette tip for 10 times, and then the tube was incubated in 37 ºC water bath for 30 

minutes. The mix was gently pipetted for 10-20 times every 10 minutes during incubation. After 

incubation, the cell suspension was re-pipetted again until no visible clots could be seen. Finally, 

the well-dissociated cell suspension was centrifuged at 300g for 3 minutes and washed with DPBS.  

 

7.2. Single	cell	capture	and	cDNA	synthesis 

Single cells were captured with Fluidigm C1 Single-Cell mRNA Seq IFC, 10–17 µm using the 

Fluidigm C1 system according to the manufacturer’s instructions. Immediately before cell capture, 

viability was assessed by trypan blue staining. In all experiments, the cell viability was close to 

100%. A concentration of 1,000–3,000 cells/µL was used for cell loading. In total, 1,512 single 

cells were captured from 5, 6, 8, 16, 19 and 20 PCW postmortem fetal brains (table S3). After 

capture, C1 chips were examined visually and the number of cells at each capture site was recorded 

manually. Cells captured by C1 were subsequently processed through lysis, reverse transcription 

and PCR amplification to generate single-cell cDNA libraries using the Smarter Ultra Low Input 

RNA kit for Fluidigm (Clontech). The cDNAs from all capture sites were harvested the next 

morning in about 3 µL C1 harvest reagent and were transferred to a 96-cell PCR plate in 10 µL C1 

DNA dilution reagent.  
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7.3. Single	cell	RNA-Seq	library	preparation 

cDNA concentration was quantified with Quant-iT™ PicoGreen ® (Invitrogen™, P7589). cDNA 

samples were diluted to 200 ng/µL with C1 harvest reagent and libraries were prepared and 

indexed using Nextera XT Library Prep Kit (Illumina), according to the manufacturer’s protocol. 

All sequencing libraries were assessed for quality by Agilent Bioanalyzer, using high sensitivity 

dsDNA assay.  

 

Library of single cells pooled from each C1 IFC was denatured using the Illumina protocol. The 

denatured libraries were diluted to 6 pM, followed by cluster generation on a single-end HiSeq 

flow cell using an Illumina cBOT, according to the manufacturer's instructions. The HiSeq flow 

cell was run for 100 cycles using a single-read recipe according to the manufacturer's instructions. 

 

8. Single	nucleus	RNA-Seq 

Dorsolateral prefrontal cortex (DFC) was precisely dissected from the adult human brains and 

finely pulverized to powder in liquid nitrogen with mortar and pestle (Coorstek: #60316, #60317). 

All buffers were ice-cold and all reagents were molecular biology grade. 50 -100 mg of pulverized 

tissue was added into 5 ml of the ice-cold lysis buffer: 320 mM sucrose (Sigma #S0389), 5 mM 

CaCl2 (Sigma #21115), 3 mM Mg(Ace)2 (Sigma #63052), 10mM Tris-HCl (pH 8) (AmericanBio 

#AB14043), protease inhibitors w/o EDTA (Roche #11836170001), 0.1 mM EDTA (AmericanBio 

#AB00502), RNAse inhibitor (80U/ml) (Roche #03335402001), 1mM DTT (Sigma #43186), 

0.1% Triton X-100 (v/v) (Sigma #T8787). DTT, RNAse inhibitor, protease inhibitors, Triton X-

100 were added immediately before use. The suspension was transferred to Dounce tissue grinder 
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(15ml volume, Wheaton # 357544; autoclaved, RNAse free, ice-cold) and homogenized with loose 

and tight pestles, 30 cycles each, with constant pressure and without introduction of air. The 

homogenate was strained through 40 um tube top cell strainer (Corning #352340) which was pre-

wetted with 1ml of the isolation buffer (1800 mM sucrose, 3 mM Mg(Ace)2, 10mM Tris-HCl (pH 

8), protease inhibitors w/o EDTA, RNAse inhibitor, and 1mM DTT). Additional 9 ml of the 

isolation buffer was added to wash the strainer. Final 15 ml of solution was mixed by inverting the 

tube ten times and carefully pipetted onto the 5 ml isolation buffer cushion in each of the two 

ultracentrifuge tubes (Beckman Coulter #344059), without disrupting the phases. The samples 

were centrifuged at 30,000 x g, for 60 min at 4 ˚C in the Beckman SW41-Ti rotor of the Beckman 

L7-65 ultracentrifuge. After ultracentrifugation, the supernatant was carefully and completely 

removed and 100 ul of the resuspension buffer (250 mM sucrose, 25 mM KCl (Sigma #60142), 

5mM MgCl2 (Sigma #1028) 20mM Tris-HCl (pH 7.5) (AmericanBio #AB14043; Sigma #T2413), 

protease inhibitors w/o EDTA, RNAse inhibitor (80U/ml), 1mM DTT) was added dropwise on the 

pellet in each tube and incubated on ice for 15 minutes. Pellets were gently dissolved by pipetting 

30 times with 1ml pipette tip, pooled and filtered through 40 um tube top cell strainer. Finally, 

nuclei were counted on hemocytometer and diluted to a concentration of 1 million/ml with sample-

run buffer: 0.1% BSA (Gemini Bio-Products #700-106P), RNAse inhibitor (80U/ml), 1mM DTT 

in DPBS (Gibco #14190).  

 

The nuclei suspension was further processed at Yale Center for Genome Analysis (YCGA) core 

facility. Single nuclei were captured and barcoded with 10X Genomics chromium platform (10x 

Genomics), using Chromium Single Cell 3’ Library and Gel Bead Kit v2, (10x Genomics #PN-

120237) and Chromium Single Cell A Chip Kit (10x Genomics #PN-120236) and following 
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manufacturer’s protocol (https://support.10xgenomics.com/permalink/3vzDu3zQjY0o2Aqkkk 

I4CC, CG00052_RevE). A maximum of 10,000 nuclei were targeted for recovery. One 

modification we made in the protocol was to increase the total number of cDNA amplification 

cycles to 14 cycles from the recommended 8 cycles for targeted recovery of 10000 cells, to 

generate sufficient mass of cDNA for the library construction from nuclear RNA. The final Single 

Cell 3’ Libraries were paired-end sequenced with single indexing on the HiSeq 4000 platform 

(Illumina). To avoid lane bias, multiple uniquely indexed samples were mixed and distributed over 

several lanes. 

 

9. Genotyping 

For genotyping analysis, genomic DNA was extracted from approximately 25 mg of brain tissue, 

usually collected from the CBC using the DNeasy Blood and Tissue kit (Qiagen). In detail, brain 

tissue from each brain was lysed in Buffer ATL supplemented with proteinase K at 56˚C for 3 to 

4 hours. If necessary, tissue was homogenized with a pellet pestle motor homogenizer (Kontes) 

before adding Proteinase K. Genomic DNA was purified from the lysate by passing it through the 

column provided in the kit. The DNA was eluted with 200ul of AE buffer. The concentration of 

the DNA was measured using the PicoGreen dsDNA assay kit (Invitrogen) on a NanoDrop 

(Thermo Scientific). DNA integrity was confirmed by agarose gel electrophoresis. Illumina Omni-

2.5 million SNP arrays were used for genotyping analysis. DNA samples were processed at the 

Yale Center for Genome Analysis according to the Infinium HD Assay Super, Automated Protocol 

for Human Omni 2.5-Quad Bead Chip (Illumina). All SNP-arrays were scanned using the Illumina 

iScan system. 
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10. mRNA-Seq	data	analyses	 

mRNA-Seq data processing was based on the RSEQtools framework, version 0.5 (81) and the 

workflow is shown in fig. S1. Details of each processing step are given below. 

 

10.1. Sequence	alignment 

mRNA-Seq reads were aligned to the human genome assembly hg38/GRCh38 excluding minor 

haplotypes, random and unknown sequences. Hence, only the 22 autosomes, X, Y, and M 

chromosomes were considered for the alignment. FASTA files were downloaded from the UCSC 

genome browser (82). Additionally, the sequences of spike-in RNAs were included in the 

reference. The FASTA file of the spike-in RNAs is available at 

http://archive.gersteinlab.org/proj/brainseq/spike_in/spike_in.fa.  

 

Alignment of the reads was performed by STAR (version 2.4.0e) (83). Command line"--runMode 

genomeGenerate" was used to build the sequence index for both human genome and spike-in 

sequences. To improve the mapping quality of splice junction reads, human gene annotation 

retrieved from the GENCODE project (version 21) was additionally provided (84). Command line 

"--sjdbOverhang 74" was used to construct splice junction library.  
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As an example, the alignment of Sample A is given below 

 

where,"hg38ANDSpikein" is the indexed human genome and spike-in sequences. More details 

about the parameters are available at https://github.com/alexdobin/STAR/releases. Some default 

parameters were changed to obtain high confidence alignment. Options "--outSAMstrandField 

intronMotif" and "--outFilterIntronMotifs RemoveNoncanonical" were used to make the STAR 

alignment compatible with Cufflinks in the downstream splicing analyses. 

 

Finally, the entire mRNA-Seq information were wrapped in the BAM format alignments. 

 

10.2. Alignment	visualization	and	measuring	expression 

After the reads were mapped to the reference sequences, the alignment was visualized in the UCSC 

genome browser and the expression level of genes, exons, and spike-in RNAs were measured in 

the commonly used units of RPKM (reads per kilobase of exon model per million mapped reads) 

(85). SAMtools (86), RSEQtools (81) and UCSC applications (82) were used to perform this task.  

 

First, the BAM format alignment was converted into SAM format alignment by using the "view" 

function in SAMtools, and then the "sam2mrf" function in RSEQtools was used to convert the 

SAM format to Mapped Read Format (MRF). 

--runMode alignReads --readFilesIn A.fq --outFileNamePrefix A.out --genomeDir 
hg38ANDSpikein --runThreadN 8 --outSAMattributes All --outSAMtype BAM 
SortedByCoordinate --limitBAMsortRAM 62000000000 --quantMode TranscriptomeSAM --
outFilterMismatchNoverLmax 0.1 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --
outSAMunmapped Within --outFilterType BySJout --alignMatesGapMax 500 --
outFilterMultimapNmax 50 --alignEndsType Local --outSAMstrandField intronMotif --
outFilterIntronMotifs RemoveNoncanonical 
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To visualize sequence alignments in UCSC genome browser, the MRF format was converted to 

wig format using “mrf2bedGraph” function in RSEQtools. Then, the “wigToBigWig” applications 

in UCSC was used to convert wig format to bigwig format. The bigwig format alignments will 

display the mapped reads in the genome browser as a graph. 

 

Thereafter, analyses were carried out using only uniquely mapped reads because of the uncertainty 

of the reads mapped to multiple sites. In addition, mitochondrial reads were excluded due to their 

large variability across different individuals. After filtering, RPKM values were computed using 

"mrfQuantifier" function in RSEQtools. This program required an annotation set, which includes 

elements whose expression level is to be measured. Due to the presence of multiple transcripts for 

each gene in the human genome, assignment of reads to specific transcript is not straightforward. 

Hence, a composite model of a gene, which is a union of all exonic nucleotides across all of its 

transcripts, was defined. "mergeTranscript" function in RSEQtools was used to generate the 

composite gene model from GENCODE (version 21). From the composite model of genes, the 

composite model exons were also extracted. The mrfQuantifier calculated an expression value for 

each annotation entry by counting reads from all nucleotides that overlap that annotation entry. 

Subsequently, this value was normalized per million mapped nucleotides and the length of the 

annotation item per kb (RPKM). 
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In summary, the steps to compute the expression levels for sample A: 

 

STAR, SAMtools format conversion, and measuring expression by RSEQtools were driven by in-

house Perl scripts and were run at the Yale High Performance Computing clusters.  

 

Moreover, we used HTSeq (87) to generate read count for every gene annotated in GENCODE 

(version 21)  such that these raw read counts were used as the primary input for DESeq2 (88) .  

 

10.3. Normalization	and	batch	correction 

Gene expression values were further processed to remove unwanted technical variates. Firstly, 

since the mitochondrial reads were excluded due to their large variability across different 

individuals, the mitochondrial genes were excluded from further analyses. The in-house analysis 

found their expression values strongly correlated to PMI values (Spearman correlation coefficient 

= 0.62). Secondly, conditional quantile normalization was performed using CQN Bioconductor 

Convert BAM format alignment to SAM format alignment: 
$ samtools  view  A.bam  >  A.sam 
Convert SAM format to MRF: 
$sam2mrf  <  A.sam  >  A.mrf 
Build composite model of gene: 
$mergeTranscripts  knownIsoforms.txt  transcript.interval  compositeModel  >  
geneComposite.interval 
where "knownIsoforms.txt" determines which transcript isoforms belong together; 
"transcript.interval" is the interval format annotation of transcript isoforms; 
"geneComposite.interval" is the interval format annotation of gene composite model, from which 
the interval format annotation of exon composite model is extracted; 
Calculate expression of any assigned element: 
$mrfQuantifier  annotation.interval  singleOverlap  <  A.mrf  >  A.expression 
where "annotation.interval" should be the interval format annotations for gene composite model, 
exon composite model and spike-in RNAs; "singleOverlap" means reads that overlap with 
multiple annotated features were excluded.  
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(89) to correct global distortion and to exclude GC-content bias. Finally, ComBat (90) was used 

to remove batch effects due to processing at two different sequencing centers, i.e., Yale and USC. 

 

10.4. Quality	control	assessments 

Several quality control measures were implemented throughout sample preparation and data 

analysis steps. Samples that failed to pass the quality control measures were resequenced, when 

possible, or removed from analyses. A work flow of all data analysis quality control steps is shown 

in the figs. S1 and S2. 

 

10.4.1. Spike-in	RNAs	and	sequencing	error	rate 

Multiple spike-in RNAs were used to tag different samples (table S15). A pair of spike-in RNAs 

unique to the region from which the sample was taken was used to identify any possible sample 

swaps from library preparation to sample loading on the sequencer. In addition, three common 

spike-in RNAs were also added. All five spike-in RNAs were used to calculate sequence error rate. 

Since the sequence of the spike-in RNAs was known, mismatches between the sequenced reads 

and the reference spike-in RNAs was used to estimate sequencing error rate of Genome Analyzer. 

The dependence between the percentage of mismatches and the sequencing cycles were plotted 

and mostly low sequencing error rates (median values <5%) were found. As expected, a higher 

error rate was observed towards last sequencing cycles (fig. S2) 

 

10.4.2. Reads	from	mitochondrial	DNA,	rRNA	and	tRNA 

For every sample, the number of reads or percentage of reads that mapped to the 25 chromosomes 

and different RNA categories was calculated (fig. S2 and table S1). Notably, the proportion of 
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reads mapped to X and Y chromosomes were concordant with the gender of the individuals. To 

assess the genome-wide uniformity, the percentages of genome and exons covered by reads were 

counted for each chromosome. Additionally, we counted the percentage of reads mapped to 

protein-coding genes, non-coding RNAs, intronic regions and intergenic regions. Reads mapped 

to non-coding RNAs were further categorized to pseudogene, lncRNA, miRNA, snRNA/snoRNA 

and others. Most importantly, we assessed the number of reads aligned to mitochondrial, rRNA 

and tRNA to evaluate the level of RNA quality, because abnormally high percentage of aligned 

reads could be a sign of low quality of sample or failure depletion of ribosomal RNA. 

 

10.4.3. Reads	distribution	across	gene	length 

All samples were analyzed to detect any bias in read distribution along the body of each annotated 

gene. The composite exon-model gene was split into 100 equal segments, from 5'-end to 3'-end 

and RPKM of each segment was calculated. Then a ratio of the RPKM of each segment relative 

to the median RPKM value of the gene was taken. The median ratios of all genes in all samples 

(represented as a flat black line in the fig. S2) around zero indicated uniform read distribution 

along genes. There was only a slight trend of 5’ underrepresentation and 3’ overrepresentation. 

 

10.4.4. Sequencing	depth	simulation	

In our previous work (20), we performed the sequencing depth simulation to investigate the 

dependence between total sequenced reads and expression variation when measuring the 

abundance of gene and exon. The simulation suggested ten million of uniquely mapped reads could 

efficiently quantify the abundance of gene and exon, even higher sequencing depth could gain less 

expression variation. We adopted this work to the quality control pipeline. 
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10.4.5. Gene	expression	distribution 

The fractions of protein-coding and non-coding genes expressed over a range of abundance levels 

(RPKM ≥0.1, ≥0.5, ≥1, ≥5) were counted for NCX areas and subcortical regions (HIP, AMY, STR, 

MD, CBC) (fig. S2 and table S1). 

 

10.5. Clustering	analyses 

10.5.1. AC-PCA:	PCA	adjusting	for	individual	variation 

Strong individual effects were observed in mRNA-Seq data. Given the small differences observed 

between neocortical areas in the standard PCA, the first several principal components likely 

represent individual variation rather than inter-areal variation. To adjust for individual variation, 

AC-PCA was implemented. Within a time window, suppose there are K individuals. For every 

individual, samples from B regions were taken. For every sample, the expression levels of G genes 

were measured. Let Xi denote the B×G matrix for individual i. Let w denote a G×1 vector, 

representing the loading for the principal components. AC-PCA maximized the following 

objective function: 
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where 𝜆 is a tuning parameter. To encourage the coordinates for the same brain region across 

individuals to be similar, a penalty term was added in the objective function of standard PCA. The 
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spatial pattern of the brain regions is quite robust to the choice of 𝜆, and, 𝜆 = 1	was chosen. To 

gain robustness, the rank of RPKM across samples was used instead of RPKM itself. Furthermore, 

genes that have median RPKM less than 2 across all samples were filtered out in the analysis. Full 

implementation details for AC-PCA can be found in Lin et al. 2016 (23). 

 

The median gene expression levels (log2 RPKM) were calculated across samples and genes with 

median expression greater than 2 were selected. This step retained 10,952 genes. To gain 

robustness, the genes across samples were ranked and the rank used for dimension reduction 

instead of the RPKM itself. The pairwise Euclidean distances between brain regions/neocortical 

areas were calculated for each brain based on the first two PCs. The average pairwise distance was 

calculated for each brain and plotted by time window (Fig. 2 and fig. S16). 

 

10.5.2. Multidimensional	scaling	(MDS) 

The multidimensional scaling (MDS) was analyzed by using normalized RPKM values of all 

expressed genes in the autosomes from 607 samples. The Euclidean distance between any pair of 

samples was calculated to construct a distance matrix with dimension 607 x 607. The R function 

cmdscale was used to calculate two-dimensional MDS. The returned two vectors were used as 

coordinates x and y for each of the 607 samples to make a scatter plot in a 2-dimensional plane 

(Fig. 2 and fig. S11). To survey the effects from confounders, we performed linear regression 

analysis between top 10 multidimensional scaling components and 10 potential confounders: age, 

region, sequence depth, pH, RIN, sex, ethnicity, brain hemisphere, sample dissection score, and 

sequencing processing site. The squared correlation coefficient was utilized to measure the effect 

extent originated from confounders (fig. S11). 
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10.5.3. Hierarchical	analysis	

The hierarchical analysis was implemented by using normalized RPKM values of all expressed 

genes in the autosomes from 607 samples. The 1- Pearson correlation between any pair of samples 

was calculated to construct a distance matrix with dimension 607 x 607. The R function hclust 

with average or UPGMA model was used to perform hierarchical analysis. The returned clustering 

tree was plot as circular dendrogram by using the R function as.phylo (Fig. 2 and fig. S13). To 

survey the effects from confounders, we matched the 10 potential confounders (i.e. age, region, 

sequence depth, pH, RIN, sex, ethnicity, brain hemisphere, sample dissection score, and 

sequencing processing site) to each of 607 dendrogram branches (fig. S13).  

 

10.6. Identification	of	temporally/spatially	differentially	expressed	genes	

Differentially expressed (DEX) genes were computed for every pair of 16 brain regions and 9 time 

windows (1-9). That is, the comparisons were separately performed in two different dimensions, 

of which the spatial dimension was the pairwise region comparison in each time window and the 

temporal dimension was the pairwise windows comparison for each region. 

 

The DESeq2 package was utilized to perform the differential expression analyses (88). The reads 

count per gene served as the input for DESeq2. The GC content correction from CQN package 

was incorporated to DESeq2. Besides, the two sequencing sites (Yale and USC) were set as 

covariates to reduce the batch effects. Since we collected more than one sample in either condition, 

they were treated as biological replicates to improve the reliability of DEX genes, because DESeq2 

was more reliable at comparing groups with replicates. When performing the comparison, DESeq2 
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firstly gets the mean expression level as a joint estimate for both groups, and then calculates the 

difference as well as the p-value for the statistical significance of this change. Statistical tests for 

differential expression were based on a model using the negative binomial distribution. The 

reported statistical significances were corrected for multiple testing using the Benjamini-Hochberg 

procedure (91) with a false discovery rate less than 0.01. In addition, to be called DEX genes we 

required RPKM > 1, reads count > 10 in at least one condition, and fold change > 2. DEX in 

multiple regions and across time is plotted in fig. S15.  

 

10.7. Identification	of	genes	differentially	expressed	by	sex	

Sex-differential expression analyses were run for samples in windows represented by both sexes 

(windows 2-9; excludes outlier individual HSB155, by PCA and inter-sample correlation). We 

filtered to expressed genes, defined as genes with a read count ≥10 in at least one sample from 

each of ≥2 individuals, leaving a total of 29,875 (49.7%) transcripts for analysis. We adjusted log2-

transformed counts for processing site using ComBat (90), and for sample-level quantitative 

variables (RIN, PMI, and sequencing depth) using linear regression, with missing RIN and PMI 

values imputed to the median of non-missing values. By the nature of the sample collection 

methods, the male and female samples are not closely matched for developmental age; however, 

age is a strong contributor to the variance in gene expression and strongly correlated (r = 0.82) 

with the first principal component from all 29,875 expressed transcripts. To account for the 

differences in developmental stage between male and females we used linear interpolation 

(‘approx’ function in R) to estimate the expression of each transcript at a given developmental 

window for males and females. This interpolation was performed separately for the male and 

female samples within each of 16 brain regions for all ages from 13 PCW to 40 years. Post-
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interpolated counts were estimated at 30 designated developmental time points within this age 

range. We then applied conditional quantile normalization (CQN) (89) to the interpolated counts 

to correct for transcript-level variables GC-content and gene length. 

 

Differential expression analysis was assessed using DESeq2 (88) on the interpolated counts and 

normalization factors from CQN within each of the 16 brain regions and 8 developmental stages 

for a total of 128 tests. Instead of selecting arbitrary p-value and/or fold difference (FD) thresholds 

for defining sex-DEX genes, we opted to identify the top 100 genes expressed more highly in 

males (male-DEX), and the top 100 genes expressed more highly in females (female-DEX), from 

each region-stage, according to p-value and fold difference direction.  

 

Based on the logic that a truly sex-DEX gene would show a degree of sexual dimorphism in 

neighboring developmental windows (represented by different individuals) we sought to estimate 

the probability of observing a gene in the top 100 for each sex in neighboring windows by chance 

in the same brain region. By randomizing the assignment of sex (17 random females and 21 

random males, as in the true data) to each of the samples we ran 100 permutations of the 

experiment, including the interpolation, differential expression, and selection of 100 top “male”-

DEX and “female”-DEX genes. By determining the proportion of genes that appeared in N 

consecutive developmental windows across all regions, time periods, and permutations we 

estimated the false discovery rate (q-value) for a given value of N. We report and characterize all 

genes with q-values ≤0.05, which represents a threshold of two or more neighboring time periods.  
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10.8. Gene	co-expression	network	analyses	and	module	characterization 

Weighted gene co-expression network analysis (WGCNA) (92) was performed using R package 

WGCNA to investigate the spatio-temporal dynamics of gene expression (fig. S31 and table S9). 

The normalized and batch corrected gene RPKM values were first log2-transformed. Next, 

pickSoftThreshold function was used to analyze the network topology with 25 as soft-threshold 

power. In order to do automatic network construction and module detection, blockwiseModules 

function was used with several customized parameters, i.e., mergeCutHeight = 0.20 and 

networkType = signed. Modules with fewer than 10 genes were merged to their closest larger 

module. For each module, WGCNA generated an eigengene to represent modular features. To 

check the reliability of detected modules, custom R scripts were used to calculate the correlation 

between a gene and modular eigengene. Genes were re-assigned to another module if the gene had 

larger correlation coefficient with that module’s eigengene than with its own. Overall, only a small 

number of genes were re-assigned to other modules. For those changed modules, the 

moduleEigengenes function was used to re-calculate the eigengene. To illustrate the modular 

feature, the smoothed fitted trajectories of the modular eigengenes were plotted as function of 

developmental windows using lowess function in R. To analyze the gene ontology item enrichment 

for genes in each module, two online resources were utilized, i.e., DAVID (93) and Gene Ontology 

Consortium (94).  

 

10.9. Alternative	splicing	analyses 

10.9.1. Exon	percent	spliced	in	(PSI) 

For this analysis, to reduce unwanted influences due to inadequate sequencing depth, we solely 

chose these subjects with over 20 million uniquely mapped reads, resulting in 479 samples from 
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41 donor brains (table S1). The efficiency of one exon splicing into transcript was indicated by the 

percent spliced in (PSI) index. The PSI score summarized the possibility of one specific splicing 

event. For instance, a PSI score of 1 (or 100%) meant constitutive exons that were included in 

every gene transcript, whereas PSI score less than 1 (or 100%) denoted this exon was excluded 

from some gene transcripts. In short words, exon PSI could be the identifier of gene alternative 

splicing event. For one specific exon, the PSI score was calculated using the normalized counts as 

the following formula: 

 

PSI = IR / (IR + ER) 

 

where IR is the number of reads supporting exon inclusion and ER corresponds to the number of 

reads supporting exon exclusion. In application to genome-wide calculation for hundred thousand 

exons, the BAM format base-alignment, BED format junction-alignment, and GTF format exon-

annotation were incorporated to implement our pipeline that was adopted from (95) and was 

embedded in our PERL scripts to automatically analyze hundreds of samples. In brief, the exon 

annotations were firstly processed to generate unique exonic signature using 

dexseq_prepare_annotation.py function from DEXSeq (96), and subsequently the base- and 

junction- alignments were assembled to exonic entries to compute IR and ER using coverageBed 

and intersectBed functions from bedtools (97). To illustrate the spatio-temporal dynamics, the 

smoothed fitted trajectories with confidential intervals were plotted as function of developmental 

windows using ggplot2 package in R (fig. S18). 

 

10.9.2. Multidimensional	scaling	(MDS)	of	alternative	splicing 



84 
 

The MDS analysis of alternative splicing was done by plotting exon PSI. The Euclidean distance 

between any pair of samples was calculated to construct distance matrix with dimensions 607 x 

607. The R function cmdscale was used to calculate two-dimensional MDS. The returned two 

vectors were used as coordinates x and y for each of the 607 samples to make a scatter plot in a 2- 

dimensional plane (fig. S12). To survey the effects from confounders, we performed linear 

regression analysis between top 10 multidimensional scaling components and 10 potential 

confounders: age, region, sequence depth, pH, RIN, sex, ethnicity, brain hemisphere, sample 

dissection score, and sequencing processing site. The squared correlation coefficient was utilized 

to measure the effect extent originated from confounders (fig. S12). 

10.9.3. Identification	of	top	variable	genes	and	Gene	Ontology	analysis 

We calculated the squared coefficient of variation (CV2) for each gene in each individual across 

all neocortical areas. The CV2 values for all individuals in the same window were averaged. For 

each window, and for protein-coding genes with an average RPKM>1 in the window, we fitted a 

model of CV2 to the inverse of the mean to model the dependence of CV2 on the mean of 

expression. Genes with observed CV2 values above 3 standard deviation from the predicted value 

were selected as top variable genes. For top variable genes in each window we performed a Gene 

Ontology enrichment analysis using the R package GOstats and using genes expressed at RPKM>1 

in the corresponding window as background. P-values were corrected by false discovery rate using 

the Benjamini-Hochberg method. 

 

10.9.4. Identification	of	genes	with	differential	alternative	splicing 

We first split the samples to prenatal and postnatal groups to identify genes with statistically 

significant enrichment of alternative splicing in either stage and then compared between stages. 
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W5 was excluded from both prenatal and postnatal groups. The comparison was implemented for 

DFC, HIP, AMY, STR, MD, and CBC independently. To optimize the comparison and mostly 

reduce the unwanted technical variance, we did filtering based on following criteria (1) exon 

inclusion or exclusion with at least 2 supporting reads, (2) exon PSI larger than 0.05 and less than 

0.95, (3) gene with more than 2 exons. After identifying the genes and exons, we performed t-test 

for each gene by comparing the exon PSI of all its exons between prenatal and postnatal stage. The 

genes with one-side Student test p-values less than 0.01 were chosen as differentially alternative 

spliced. In consequence, 1,710 genes were identified, of which some genes were recurrent in 

different brain regions or in different developmental stages (table S7).  

 

We also computed exon PSI for the highly variable neocortical genes (as described in the 

Identification of top variable genes and Gene Ontology analysis), and subsequently compared them 

with those of the background genes in each developmental window. To perform a fair comparison, 

the background genes, equal to the number of variable genes, were randomly extracted from non-

variable genes with expression values larger than 1 RPKM but excluded from the highly variables 

genes. To avoid sampling bias, we repeated sampling 100 times and used the mean value to 

represent the exon PSI for the background genes. The Student t-test was calculated to measure the 

statistical significance of the global difference between highly variable neocortical genes and 

background genes in term of alternative splicing. 

 

10.9.5. RNA-binding	protein	(RBP)	analysis 

A number of RNA-binding proteins (RBPs) are involved in regulating alternative splicing. 

Assuming gene expression could represent the abundance of its translated protein, the regulation 
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intensity accompanied with RBP is essentially proportional to the expression of RBP gene. 

Therefore, profiling the expression of RBP gene could potentially approach the exploration of gene 

alternative splicing. To do that, we firstly profiled the expression of RBP genes involved in 

alternative splicing regulation (fig. S19) (98). Secondly, we compared the profiles of RBP gene 

expression to those of exon PSI. By using quantitative correlation analyses, it is shown the strong 

positive correlation for NCX, HIP, AMY, STR, and MD (Median correlation coefficients > 0.5), 

except for less correlation for CBC (Median correlation coefficient ~ 0). Notably, the CBC is 

occupied by relatively higher expression in postnatal stages, which is consistent with GTEx’s 

report but expands their finding from adult to a wider postnatal stage. 

 

10.9.6. Validation	of	alternative	splicing	by	exon	specific	RT-PCR 

An aliquot of total RNA that was previously extracted from each brain region was used for 

secondary validation with RT-PCR. One µg of total RNA was used for cDNA synthesis using 

SuperScript III First-strand synthesis Supermix (Invitrogen). cDNA was subsequently diluted with 

nuclease-free water to 1 ng/µl. 3 µl of cDNA solution was used for the PCR with Advantage 2 

DNA Polymerase (Clontech, Mountain View, CA) under the following conditions: activation at 

95ºC for 1 minute, followed by 30 cycles at 95°C for 30 seconds and 68ºC for 1 minute. Transcript 

or gene-specific high-melting temperature primers were designed using NCBI/Primer-BLAST 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) (table S16). Expressed sequence information 

was obtained from GenBank (NCBI) and our mRNA-Seq data set. Exon specific RT-PCR for 

GRIN1 was performed using the same cDNA template PCR products were run on Agilent 

Bioanalyzer for quantification of each band that is specific to either inclusion or exclusion of an 

alternative exon. 
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11. Small	RNA-Seq	data	analyses 

For this analysis, the schematic of the workflow is shown in fig. S3. All samples (table S2) passed 

quality control using FastQC (99), considering a wide range of quality metrics including per-

Sequence and per-base quality, per-Sequence and per-base GC content, per base N content, 

sequence duplication levels, and overrepresented sequences. Sequence reads were clipped to 

remove the Illumina small RNA 3' adapter (TGGAATTCTCGGGTGCCAAGG). Clipped reads 

with length less than 18 bases were excluded in the downstream analyses. The length distribution 

analysis of the clipped reads showed an enrichment for microRNAs (miRNAs, ~22 bps in length) 

(fig. S17). Hence, the clipped reads were collapsed into the multi-fasta format that contains only 

unique sequences and associated counts for each read were used as input into the pipeline 

constructed around the miRDeep2 miRNA analysis software described in (100). 

 

The trimmed reads were searched against human mature and precursor/hairpin databases in 

miRBase (release 21) (101). Reads not mapped to known targets were searched against non-human 

mature miRNAs in miRBase, as well the entries in Rfam database (102). Still remaining reads 

were mapped to the human genome (hg38) to identify read clusters corresponding to potential 

novel miRNAs. All mapping procedures were performed using Bowtie (version 1.2.1.1).  

 

The multidimensional scaling analysis was implemented for expressed mature miRNAs with count 

per million (CPM) greater thanor equal to 5 in at least 5 samples. The Euclidean distance between 

any pair of samples were calculated and the R function cmdscale was used to calculate two-

dimensional MDS. The returned two vectors were used as coordinates x and y for each sample to 
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make a scatter plot in a 2-dimensional plane (fig. S17). To survey the effects from confounders, 

we performed linear regression analysis between top 10 multidimensional scaling components and 

9 potential confounders: age, region, sequence depth, pH, RIN, sex, ethnicity, brain hemisphere, 

sample dissection score. The squared correlation coefficient was utilized to measure the effect 

extent originated from confounders (fig. S17). 

 

12. Single	cell	RNA-Seq	data	analyses 

12.1. Quality	assessment	and	data	analyses 

Illumina CASAVA was used to purify the low-quality and non-identified reads, and FastQC (99) 

was used to report the fundamental quality parameters (e.g., raw reads number, sequencing base 

quality score distribution and GC content). To avoid adapter contamination and higher error rates 

in reads boundary, 12 nucleotides in 5’-end and 13 nucleotides in 3’-end were trimmed, leaving 

75 nucleotide long reads for sequence alignment. Similar to data analysis conducted for bulk 

mRNA-Seq, the alignment of the reads was performed by STAR (version 2.4.0e) (83). Command 

line"--runMode genomeGenerate" was used to build the sequence index for both human genome 

and spike-in sequences. To improve the mapping quality of splice junction reads, human gene 

annotation retrieved from the GENCODE project (version 21) (84) was additionally provided. 

Command line "--sjdbOverhang 74" was used to construct splice junction library. In term of gene 

expression measurement, RSEQTools (81) and SAMtools (86) were used to calculate the gene 

RPKM values, and featureCounts (v1.5.0) (103) was used to calculate the gene reads count values 

for each annotation entry. 
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In addition to FastQC, a series of quality control measures were implemented (fig. S4). Firstly, we 

excluded some artificial single cells, because under the microscope the wells they occupied were 

observed to be empty or to be filled with more than one cell in Fluidigm C1. Secondly, uniquely 

mapping reads per cell were counted and only cells with at least 100,000 unique exonic reads were 

used. Next, the reads distribution across different chromosomes was checked. Cells with more than 

20% unique reads mapped to mitochondrial chromosome were considered low quality and 

removed. Besides, the reads coverage uniformity is considered as an indicator for RNA 

degradation. We checked the reads coverage uniformity to choose those cells with fold change of 

average reads coverage within gene less than 3. To ensure the enough interrogation of human 

transcriptome, cells with less than 1000 genes having RPKM > 1 were excluded. In total, 1198 out 

of the 1,512 captured single cells passed all QC filters (table S3).  

 

12.2. Clustering	and	classification 

We filtered genes and cells previous to clustering. We kept 25,663 RNA transcripts which were 

detected with at least 25 read counts cumulatively in all single cells that passed QC and log2 

RPKM>1 in at least 5 single cells. We used iteratively the method described in Lake et al. (27) for 

clustering and classification which uses unsupervised hierarchical clustering coupled to random 

forest classification. We applied the method in a first prospective round and excluded cells derived 

from brain HSB433 that appeared suspiciously clustered together showing only markers for 

interneurons. We re-ran the analysis on the remaining 814 cells, independently on embryo and 

fetal cells, obtaining 24 clusters (fig. S20). We labelled obtained clusters on the basis of well-

known cell-type markers. Log transformed RPKMs of selected marker genes were plotted using 

R package heatmap.3 (104). We selected those genes with FC>10 between any two nodes in the 
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tree of clusters to perform a T-distributed stochastic neighbor embedding plot (105), which was 

merely used to present data in two dimensional coordinates. Perplexity was set to 20. To analyze 

robustness to data processing we re-clustered cells using the Seurat package. We regressed out the 

per-cell number of genes and clustered based on the first 30 principal components on the top 

variable genes. The resolution parameter to find clusters from the same PCs was set to 1.5. 

 

12.3. Marker	genes	selection	for	SC	clusters 

To identify marker genes for each individual cell type we performed differential expression (DE) 

analyses using Seurat function FindAllMarkers (106). In brief, we took one group of cells and 

compared it with the rest of the cells, using a binomial model. For any given comparison, we only 

considered genes that were expressed by at least 50% of cells in either population. Genes that 

exhibit p-value under 0.01 were considered statistically significant. Heatmaps were generated with 

R function heatmap.3 (104) (fig. S22). 

 

12.4. Alignment	of	single-cell	datasets 

We used the method described in (107) and implemented it in Seurat package. When aligning 

prenatal single cells to adult single nuclei, we used the union of the top 3000 most variable genes. 

Since a large number of nuclei were captured in the adult brains, the alignment was performed by 

randomly sampling 100 nuclei from each cell type as representative. In addition, we aligned 

prenatal cells to adult cells from Darmanis et al. (9) using the union of the top 2000 most variable 

genes. After alignment of the datasets, a tSNE plot was produced to visualize the cell type 

correspondence between datasets on the aligned canonical correlation dimensions (fig. S23).  
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12.5. Cell type deconvolution 

The integrated analysis of bulk mRNA-Seq and scRNAseq provides an opportunity to survey the 

cell type composition of tissue samples. To achieve this goal, the first step is to get the cell type 

signature. Conceptually, the cell type signature should be a combination of a series of gene markers 

specific to the cell type. Theoretically, the number of gene markers is not a big contributor, but the 

level of specificity strongly affects the performance of deconvolution. Considering our tissue 

samples span from early embryonic period to adulthood, we used adult scRNA-Seq data set from 

(27), in addition to our prenatal scRNA-Seq data set. To balance the number of cells, we randomly 

chose 100 cells in each cell type. For a few cell types with less than 100 cells, all cells were utilized. 

In total, nine cell types - neural progenitor cells (NPC), excitatory neurons (ExN – prenatal and 

adult): interneuron0s (InN– prenatal and adult), astrocytic lineage (Astro), oligodendrocyte lineage 

(oligo) endothelial cells (Endo) were involved in this analysis. Using glmLRT function from edgeR 

packages (108), we performed differential expression analysis to find genes specific to certain cell 

type beyond the statistical significance. For each cell type, the top significantly enriched genes 

with at least 2-fold change compared to any other cell type were chosen to construct cell type 

signature. Notably, the qualified cell type signature matrix should ensure each gene has the 

significantly enriched expression values in only one cell type. Next, we used CIBERSORT R script 

to perform cell type deconvolution (109). The expression profiles of tissue mRNAseq sample and 

the expression signatures of nine cell types were simultaneously input to the pipeline, calculating 

the cell composition of complex brain tissue. These analyses were applied to 11 neocortex areas 

(fig. S29). The results were converted to the percentages of each cell type and were presented as 

function of developmental windows, leading to the illustration of temporal dynamics of cell 
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composition. For replication of the deconvolution analysis using two published fetal datasets (12, 

26) from the prefrontal cortex we used the same method and threshold criteria.  

 

To determine when neuronal layers appear, we divided excitatory neurons derived from adult 

single cell dataset (27) into deep-layer (i.e., L5 and L6) and upper-layer (i.e., L1, 2/3, 4), and 

performed our deconvolution analysis. This analysis was replicated using three different fetal 

datasets (ours, (12, 26)) in conjunction with Lake et al 2016 (27) adult dataset (fig. S27). 

 

13. Single	nuclei	RNA-Seq	data	analyses	

13.1. Processing of single nuclei RNA-Seq	

We employed the commercial software cellranger to implement the preliminary data processing 

for single nuclei RNA sequencing generated from 10x Genomics Chromium 3’ Solution (10x 

Chromium) platform. In brief, the cellranger mkfastq converts binary base call (BCL) files to 

FASTQ files and simultaneously decodes the multiplexed samples. cellranger count took the 

FASTQ files to perform sequencing alignment against reference genome, quality filtering of low 

quality reads, cell barcode counting and filtering, and unique molecular identifier (UMI) counting 

for each annotated gene. We used the default parameters, except for customizing the number of 

excepted cell number to 10,000 and constructing the “pre-mRNA” reference for single nuclei 

RNA-Seq. We utilized GRCh38/hg38 reference genome and GENCODE v21 annotation for 

human. 

13.2. Classification of cell type and subtype	
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The sparse expression matrix generated from cellranger analysis pipeline serves as an input to the 

Seurat software (110) for the classification of cell type and subtype. To optimize cell classification 

analysis and reduce unwanted technical variance, we first did quality filtering, normalization, and 

data scaling according to Seurat’s guidelines. For example, we excluded a cell with the number of 

expressed genes less than 300 or more than 7000, or with the number of UMI less than 300 or 

more than 20000, or the percentage of mitochondria reads more than 5%. The normalization 

method was “LogNormalize” and the scale factor was 10000. In addition, the linear regression was 

performed by choosing the percentage of mitochondria reads as variable. After purifying the 

expression matrix, the 100 principle components were computed and their significances were 

tested by JackStraw and visualized by Elbow plot¸ with the result of finally choosing the top 25 

principle components for tSNE and clustering analyses.  

Next, we used the R scripts SpecScore.R from (111) to compute the specificity score for each gene 

in each cell cluster. Since a cell cluster mostly corresponds to the cell type, we computed the 

correlation matrix to study the relationship between cell clusters by using the gene specificity 

score. We manually checked the hierarchical cluster and the top ranked genes in each cell cluster 

to determine which cell clusters could be assigned to what cell type. After determining the cell 

type, we re-computed the specificity score for each gene to choose the top ranked gene as the cell 

type signature markers for other downstream analyses (table S8). Under each cell type, the cell 

clusters were assigned to different cell subtypes. Lastly, we recruited the well-known gene markers 

to verify the assignment of cell types and subtypes. Notably, cells with inconsistent or no 

assignment were grouped to “Unassigned” category. 

 

14. DNA methylation data analyses 



94 
 

14.1. Data	normalization 

The raw data from the Illumina 450K arrays were normalized by Fresco 

(https://github.com/paulmanser/fresco). Briefly, a group of loci from housekeeping genes whose 

CpG sites were known to be consistently highly methylated or unmethylated in all cell types within 

brain tissue were identified (112). Then a three-dimensional local regression surface to the 

deviations of each array from the average was fit, as a function of non-biological variables such as 

average signal intensities and probe CG content. This gave an estimate of the distortion due to 

technical factors on each array for each combination of our non-biological predictors. This 

estimated distortion was subtracted from raw signals and these adjusted signals were then used to 

obtain the β-value, an estimate of the proportion of cells methylated at each locus (113). It has to 

be noted that this process does not use any information about batches, but is nonetheless able to 

remove batch effects as measured by sample clustering and one-way ANOVAs for batch effect 

(fig. S6). After normalization, a high correlation was observed between biological replicates (fig. 

S7). 

 

14.2. Identification	of	cell	type	specific	methylation	sites 

Cell type specific methylation probes were defined as those CpG sites that exhibit 30% 

methylation level differences (a delta (β) ≥0.3) between the neuronal and non-neuronal cell 

samples from (114). A total of 27,349 sites were identified. 

 

14.3. Comparison	of	DNA	methylation	trajectories	in	fetal	versus	postnatal	development. 

For each one of the 461,594 methylation sites (MS) analyzed, DNA methylation values were fitted 

to a multiple linear model with the log2 of the post-conception days and sex. Analysis was 
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performed with data from all neocortical regions, independently testing prenatal and postnatal 

samples to overcome any possible uncorrected batch effect and the fact that prenatal samples came 

from an independent external dataset (115). The probes were then classified into three categories 

– those showing an increasing methylation trajectory, decreasing, or non-changing through age. 

Age-correlated categories required a Bonferroni corrected p-value <0.05 and absolute difference 

of beta (delta(β)) values between the first and the last fitted points predicted by the model to be 

greater than 0.1. Non-changing trajectories required nominal p-values <0.05 and delta(β) <0.1. All 

possible combinations of these three categories for pre- and post-natal periods were then 

constructed to obtain the nine subcategories. 

 

MS in each category were tested for enrichment of 4 different types of elements:  

1) Genomic elements related to genes. For defining genomic elements, the GENCODE 

(version 21) gene model in hg38 was used to map MS to exons, introns, intergenic regions or 

promoters (defined as 1Kb regions around the TSS).  

2) Putative enhancers, defined as H3K27ac ChIP-Seq peaks in six DFC samples (3 fetal, 3 

adult). Peaks overlapping TSS were excluded to avoid assessing promoters. Adult and fetal-

specific enhancers were defined as explained in section 15.3. 

3) Cell type specific methylation sites in brain from (114), as in section 14.2.  

4) Genes with cell type specific expression in brain (as described in section 12.3)  

All cited categories were compared to sites that do not change through age in pre- or post-natal 

periods. When testing for enrichment in genes instead of MS, genes related to each category's MS 

according to GENCODE annotations were used. Enrichment p-values were obtained by means of 
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a two-tailed Fisher exact test. Odd ratios were also calculated applying Haldane correction when 

needed. Odds ratios for each category are shown in the rightmost panel in fig. S35. 

 

14.4. Differentially	methylated	regions 

To obtain regions of the genome with significant clustering of MS belonging to each category of 

trajectories we calculated differentially methylated regions (DMRs) independently in prenatal and 

postnatal samples by considering the multiple linear model of the DNA methylation values per 

MS (see above) and by determining series of adjacent correlated p-values (comb-p --seed 0.05 --

dist 300) (116). Briefly, what comb-p does is to calculate the auto-correlation between p-values, 

to combine adjacent ones performing a false discovery adjustment and to assign significance to 

each reported region. Only MS that were annotated in hg38 (461,453 MS) were evaluated. We 

filtered regions by imposing a corrected p-value lower than 0.05 and at least 3 MS included in the 

DMR. We then recognized hyper methylated or hypo methylated DMRs taking into account the 

direction and the amount of beta change: the slope of the linear model of all MS within a DMR 

should have same sign, positive for hyper and negative for hypo methylated regions, and the 

average absolute delta values should be higher than 0.1. Comparable DMRs between prenatal and 

postnatal stages were identified as the intersection of hyper or hypo methylated regions for any of 

the two developmental periods and imposing that smaller regions still maintain an absolute delta 

value higher than 0.1. Finally, we called a prenatal hyper or hypo DMR as fixed in postnatal if the 

region does not overlap with any reported postnatal hyper or hypo DMR and has an average delta 

for all MS in the region lower than 0.1 in postnatal samples. In an analogous way, we determined 

postnatal hyper or hypo DMRs that are fixed during pre-natal development. For the DMRs 
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included in each of the 8 categories resulting of these comparisons, we obtained the list of genes 

for which MS belonging to these DMRs were annotated (see above).  

 

15. ChIP-Seq	analyses 

15.1. Peak	calling,	annotation	and	normalization 

Sequencing reads from each sample (table 6) were mapped to human genome assembly hg38 

(NCBI GRCh 38) using Bowtie2 (117),  

 

bowtie2 --no-unal -p 4 --fast --end-to-end -q -x hg38 -U fastq -S SAM 

 

MACS 2.0 (118) was used to detect peaks for H3K4me3, H3K27ac and CTCF. For these marks, 

aligned reads from all DFC and CBC samples were pooled and analyzed by MACS (FDR ≤ 0.05) 

to detect the peaks enriched in immunoprecipitated samples over the input.  

 

macs2 callpeak –t BAMFILE -c INPUT.BAM --name=NAME --format=BAM --gsize=hs --

tsize=73 --keep-dup=auto --bw=300 --nomodel -q 0.05 –broad (narrow peaks for CTCF). 

 

Each brain sample was then analyzed individually. If there was at least a 50 % overlap between a 

peak in an individual brain sample and a peak in the master list, that peak was scored as detected 

in that brain. A peak was defined as present if it was detected in multiple brains (2 out of 3 or 3 

out of 4) in DFC or CBC. Enriched peaks in H3K27me3 were detected by SICER 1.1 (119), with 

parameter settings of window size as 1000bp, gap size as 3000bp, and FDR ≤ 0.01. An approach 

similar to other marks was applied to construct a master list of H3K27me3 peaks and to score a 
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present peak after comparing individual brain sample peaks. To compare biological replicates, 

peaks with FDR ≤ 0.1 were selected and plotted as scatter plots. The function 'kde2d' in R package 

was used to create a 2D density image for each comparison. A high correlation was observed 

between replicates (fig. S8). 

 

All peaks were annotated by our in-house Python scripts according to database 

GENCODEv21. We selected all transcripts in the database with types “protein_coding”, 

“lincRNA”, “snoRNA”, “snRNA”, “miRNA”, “misc_RNA”, and “rRNA” for our annotation. We 

matched each peak with transcripts in the database as follows. First, the peaks were matched with 

extended promoter regions, defined as TSS ± 1kb, in the database. If peaks were within the 

promoter regions, the genic location of the peaks was assigned as “TSS”. If peaks were outside the 

promoter regions, we then tested if they were matched with any transcripts. Where peaks matched 

multiple transcripts, we selected the longest one as the target transcript for further analysis. The 

genic location of a peak matching a transcript was assigned as “Exon” if that peak overlapped any 

exon. If the peak did not overlap with an exon it was assigned as an “Intron”. If peaks did not 

overlap any transcripts we assigned their genic location as “Intergenic” (fig. S33).  

All ChIP-Seq peaks in the master lists were normalized prior to any downstream analysis. For each 

ChIP-Seq sample, signal values for each base pair in target peaks created by MACS were read and 

an average signal value calculated using the R package Conductor. Total signal value was also 

calculated from all peaks of each sample. The average signal value for each peak was normalized 

by the total signal value. These normalized average values were used for all subsequent analyses. 
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15.2. Differential	enrichment	of	histone	modifications	and	gene	expression 

Differential enrichment was calculated as w=(SDFC – SCBC) / (SDFC + SCBC +1) , where SDFC and 

SCBC are average values of normalized signals in DFC and CBC, respectively. Based on w values, 

peaks were defined as DFC-enriched (w > 0.3), CBC-enriched (w < -0.3) and nonspecific (-0.3 to 

0.3) (fig. S34). To compare differential enrichment of histone marks with gene expression, 

expression RPKM value of the gene that the peak overlaps with was considered. For each of the 3 

groups defined above, the RPKM values for all genes were utilized to perform t-test to check the 

expression difference between the groups. 

 

15.3. Identification	and	analysis	of	temporal	and	spatial	enhancers 

In order to make possible comparisons among samples (spatial and temporal differences) we 

homogenized ChIP-Seq H3K27ac and H3K4me3 read libraries by evaluating read qualities using 

FastQC (99) and trimming all reads to 76bp using seqtk (120). To get similar cycle effect in all 

libraries we further clipped reads using a dynamic trimming algorithm with sickle (121). We then 

followed the same mapping and peak calling methodology than above with the exception that we 

trimmed the first 3bp of each read using the corresponding Bowtie2 parameter. 

 

To construct a master table of H3K27ac-enriched regions we merged all peaks into contiguous 

genomic segments when peaks overlapped within or between samples at least 1bp. We excluded 

all peaks that were present in only one sample. We annotated peaks using the minimum distance 

to a TSS described in GENCODE V21. We also indicated overlap with H3K4me3 promoter 

enriched mark, to help discriminate enhancers from promoters. Enhancers were defined as 

H3K27ac-enriched segments at least at 1kb from a TSS and without any overlap with a H3K4me3-
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enriched peak. Active promoters were defined as any H3K27ac-enriched region overlapping a 

region of 1kb around any TSS.  

 

We classified enhancer and promoter peaks as ‘fetal’ or ‘adult’, for temporal, and ‘DFC’ or ‘CBC’ 

for spatial, if they were present in at least 2 of 3 brains in one group of samples and in 0 brains of 

the other group. To avoid the possible effect of sample-specific thresholds in peak calling we tested 

the difference in signal between the putative fetal or adult-specific peaks (or DFC/CBC-specific). 

To do so we counted reads in peaks using the R package Subread (122). We tested differential 

enrichment between fetal and adult brains with DESeq2 independently in DFC and CBC, or DFC 

versus CBC, in fetal and adult, using size factors estimated from all brains together from the counts 

of all peaks identified in any brain in the dataset. Peaks showing and adjusted P-value<0.01 and 

abs(log2FC)>=1 were retained in the corresponding category -specific groups. 

 

15.4. Putative	enhancers	enrichment	in	categories 

For all genes annotated near enhancers identified in DFC we obtained the results from the DESeq2 

expression level contrasts between W4 and W9 brains (section 10.6). For fetal and adult enhancers, 

we then calculated the enrichment in genes showing differential expression between W4 and W9 

(Adjusted P<0.01 and log2(FC)>=1) by means of a Fisher’s exact test against genes annotated on 

the rest of DFC identified enhancers that were not fetal or adult specific. 

 

We used the same test to calculate the enrichment in cell type specific genes from (list), in 

overlapping NUM and GUM CpG sites from (114) and in dynamically methylated sites categories 

identified in section 14.24. 
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16. Gene	Ontology	Analysis 

We analyzed enrichments in gene ontology (GO) categories for genes annotated in differentially 

methylated regions (DMRs) for the different categories of methylated sites (see section 14.4) or 

the nearest gene (TSS) associated to different categories of putative enhancer peaks. We used 

GOstats R package for GO enrichment in a set of preselected GO categories depicting relevant 

neurological processes (e.g. neurogenesis or axogenesis). 

 

17. Classification	of	WGCNA	modules	and	integrative	enrichment	analyses 

The WGCNA modules (section 10.8) were further analyzed to characterize the different spatio-

temporal enrichment and consequently to unite them to one general feature. We proposed to 

categorize the WGCNA modules into spatiotemporally dynamic, only temporally dynamic, only 

spatially dynamic, and invariant. Using lm function from R package, we firstly fitted the linear 

regression model to survey the relationship between modular eigengene and two explanatory 

variables, i.e., six brain regions and log10 (development days). To reduce the birth disturb, the 

whole samples were divided into prenatal samples (W1 to W4) and perinatal/postnatal samples 

(W5 to W9), and were applied with the same linear regression analysis. Through summarizing the 

statistical significances inferred from these three linear regression analyses, most of WGCNA 

modules were assigned to one particular developmental and regional enrichments (table S10). On 

the other hand, we applied the same analysis to survey the relationship between modular eigengene 

and two explanatory variables, i.e., 11 NCX areas and log10 (development days), so as to gain the 

knowledge of developmental and regional enrichments occurred in neocortex. Next, to associate 

this modular classification to a particular biological function, cellular composition or biological 
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process, we calculated hypergeometric test for modular enrichment of several gene lists gained 

from different analyses of this study, including sex-DEX, enhancers, methylation sites, GUMs, 

NUMs, cell types, disease associated genes (fig. S37 and table S11). Finally, using hypergeometric 

tests, we observed the significant coincident occurrence within individual modules of genes whose 

expression was enriched in neurons, genes associated with NUM sites, and genes associated with 

fetal enhancers, which we refer to as Neuronal or N-type associations. Similarly, we observed the 

coincident occurrence of genes whose expression was enriched in glia, genes associated with non-

NUM sites, and genes associated with adult enhancers, which we deemed Glial or G-type 

associations. Again using hypergeometric tests, we found that N-type associations were enriched 

among modules in the spatio-temporal set, G-type associations were enriched among modules in 

the temporal, non-spatial set, and modules enriched for genes exhibiting sex-different expression 

were enriched among the non-spatial, non-temporal module set. Multiple testing correction was 

achieved by Benjamini-Hochberg FDR < 0.05 taken together P-values for sex-DEX, enhancers, 

methylation sites, GUM and NUMs, at P-Bonferroni < 0.05 for cell types, and FDR < 0.10 for 

disease associated genes. 

For the MAGMA gene-set analysis, an initial gene analysis was performed on the SNP p-values 

for each of the phenotypes, using the SNP-wise (multi) model, using the European panel of the 

1,000 Genomes Phase 3 data was used as reference data. Sample sizes per SNP were included in 

the analysis for the phenotypes for which they were available. SNPs were annotated to genes based 

on dbSNP 147 SNP locations and GENCODE V21 gene definitions, mapping a SNP to a gene if 

it was located in the transcription region of that gene, or within 2 kb upstream or 1 kb downstream 

of the transcription region. In total, 59,140 had at least one SNP mapped to them. 
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 The gene-set analysis itself was performed at default settings for each phenotype; the 

average sample size per gene was included as a covariate in the analysis if available for that 

phenotype. In addition, the GENCODE gene definitions where used to categorize all genes as 

protein-coding or not. This was included as a covariate in the analysis as well, to correct for 

possible systematic difference between coding and non-coding genes.  

 

18.  Hi-C data integration 

 

We have leveraged Hi-C data from the adult dorsolateral prefrontal cortex (DLPFC, (52)) and fetal 

cortices (53) to annotate GWAS risk loci. To compare interaction profiles in the adult and fetal 

cortex, we combined previously generated Hi-C datasets from two fetal cortical layers to obtain 

comparable read depths (details provided in the companion paper, (52)). After mapping and 

filtering the reads, we constructed normalized contact matrices at 10kb resolution for loop 

analyses. Promoter-based loops were identified as previously described (53). Briefly, we 

constructed background interaction profiles from randomly selected length- and GC content-

matched regions to promoters (defined as 2kb upstream of transcription start sites based on 

Gencode v21). Using these background interaction profiles, we fit interaction frequencies into 

Weibull distribution at each distance for each chromosome using the fitdistrplus package in R. 

Significance of interaction from each promoter was calculated as the probability of observing 

higher interaction frequencies under the fitted Weibull distribution, and interactions with 

FDR<0.01 (which corresponds to P-values~1x10–4) were selected as significant promoter-based 

interactions. In total, we detected 561,634 and 688,782 promoter-based interactions in the adult 

and fetal cortex, respectively.  
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19. Enrichment	of	disease	and	personality	trains	associated	variants	in	regulatory	regions	 

 

We obtained files with summary statistics (SS) for a number of neuronal and non-neuronal 

disorders or traits:  

 

• Autism spectrum disorder (ASD; (40))  

• Attention-deficit/hyperactivity disorder (ADHD; (41))  

• Schizophrenia (SCZ). CLOZUK (37) 

• Major depression disorder (MDD); (42)) 

• Bipolar disorder (BD; (43))  

• Intelligence quotient (IQ; (44))  

• Neuroticism (45) 

• Parkinson’s disease (PD; (39))  

• Alzheimer’s disease. IGAP. (38)  

• Height. GIANT (46) 

• Total cholesterol levels (48) 

• Inflammatory bowel disease (IBD; (47))  

• Glycated haemoglobin (HbA1C; (49)) 

 

We calculated enrichment in SNP-heritability using H3K27ac (active promoter and active 

enhancer mark) enriched regions identified in fetal and adult brains in this study. For comparative 
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purposes and to gain temporal resolution we complemented the dataset with H3K27ac enriched 

regions identified in three infant brains in our dataset and also embryonic brains from (21) study. 

The additional samples were trimmed, mapped and analyzed following the same methods 

described above, and a new set of merged regulatory elements were created. We also obtained 

coordinates for active enhancers identified in other tissues in the Roadmap epigenomics project 

(http://www.roadmapepigenomics.org). Classification of active enhancers and promoter regions 

in embryonic/fetal/infant/adult and DFC/CBC groups was done following these criteria.  

 

● DFC: Present in at least 2 samples in DFC brains. 

● CBC: Present in at least 2 samples in CBC brains. 

● Adult: Present in at least 2 adult samples. 

● Fetal: Present in at least 2 fetal samples. 

● Infant: Present in at least 2 infant samples. 

● Embryonic: Present in at least 2 embryonic samples. 

● Adult-DFC: Present in at least 2 adult samples from DFC. 

● Adult-CBC: Present in at least 2 adult samples from CBC. 

● Fetal-DFC: Present in at least 2 fetal samples from DFC. 

● Fetal-CBC: Present in at least 2 fetal samples from CBC. 

● Infant-DFC: Present in at least 2 infant samples from DFC. 

● Infant-CBC: Present in at least 2 infant samples from CBC. 

● Adult-DFC_sp: Present in at least 2 adult samples from DFC and 0 from CBC. 

● Adult-CBC_sp: Present in at least 2 adult samples from CBC and 0 from DFC. 

● Fetal-DFC_sp: Present in at least 2 fetal samples from DFC and 0 from CBC. 

● Fetal-CBC_sp: Present in at least 2 fetal samples from CBC and 0 from DFC. 

● Infant-DFC_sp: Present in at least 2 infant samples from DFC and 0 from CBC. 
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● Infant-CBC_sp: Present in at least 2 infant samples from CBC and 0 from DFC. 

 

We clumped GWAS hits trait-associated regions using PLINK (123). We used a P<1e-7 for the 

index SNP and clumped based on adjacent SNPs in a window of 200 kb with and LD r2>0.8 and 

a P-value <1e-4. LD values were calculated for a subset of 86 CEU samples from the 1000 

Genomes Project (50).  

 

To produce a comprehensive list of putatively disease-associated genes, we crossed SNP clumps 

with the complete ChIP-Seq dataset of H3K27ac regions which includes embryo, fetal, infant and 

adult samples (161,641 regions in total). We then annotated those ChIP-Seq peaks putatively 

associated to disease with the following strategy: 

 

1 All peaks were crossed with 10 Kb resolution loops determined by Hi-C from (51-53). 

Together, these Hi-C datasets identify loops occurring in developmental fetal and adult 

brain. We annotated all interacting genomic windows of 10Kb with the overlapping TSS 

(+/- 1kb) from GencodeV21. Then, we annotated each peak according to all of its 

interactions with TSSs. 

2 We discarded all peak-to-peak interaction that were not concordant in time and brain region 

(e.g. a DFC-fetal only peak interacting with a TSS with a CBC or DFC-Adult peak). We 

also discarded interactions that were only detected at one time period (fetal or adult) and 

involved peaks only detected in the opposite time period. 

3 All peaks that were themselves overlapping a TSS (+/- 1kb) were also associated to the 

corresponding gene. 
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4 Peaks with no evidence of Hi-C interactions with a TSS or overlapping a TSS were 

annotated to the closest open TSS that were concordant in time and brain region. Finally, 

genes containing significant SNPs (P<1x10-4) in associated clumps that were STOP-gain 

or missense mutations, or fell in UTRs or splicing regions were also included. We 

annotated SNPs using Ensembl Biomart V78 (124). 

5 The method was run independently using Hi-C from (51) and from (52) and the resulting 

genes were combined. 

6 A high confidence list of genes was produced by excluding those genes that were only 

supported by the Hi-C loop of only one dataset or was annotated by proximity using only 

one Hi-C dataset and that was the only supporting evidence. 
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Fig. S1. mRNA-Seq analysis pipeline including data processing and quality control. 

(A) Starting with sequenced reads in FASTQ format, we processed data by performing quality 

filtering, sequence alignment, format conversion, data visualization, expression quantification, 

data normalization, and batch correction. (B) Library preparation and sequencing quality were also 

subject to a quality control pipeline assessing sequencing error rate, RNA contamination and 

degradation, sequencing depth, and other metrics (see (22)).  
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Fig. S2. Quality assessments for mRNA-Seq dataset. 

(A) Distribution of the ratios of transcribed protein-coding genes per chromosome relative to the 

genome (red) and the exonic regions (gray). Male and female samples are separated for sex 

chromosomes. (B) Box plots of the sequencing error rate per cycle number. The sequencing error 

rate was estimated by the ratio of alignment mismatch of the sequenced spike-in reads against the 

reference spike-in RNAs. The red line represents the 5% limited baseline error rate. All box plots 

are under the baseline except a small number of outliers at the highest number of cycles (> 70 

cycles). (C) Distribution showing the correlation between mRNA-Seq samples in the expression 

of a given gene, in a given neocortical area or brain region, in a given window; mRNA-Seq samples 
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from the same brain region and same developmental window were treated as biological replicates 

to implement Spearman correlation analysis. (D) Uniformity of read coverage along GENCODE 

genes. The composite exon-model gene was split into 100 equal segments from the 5'-end to the 

3'-end. For each segment, the median RPKM value of one gene was calculated. The distribution 

of the ratios in all genes is shown by cyan colored box plots and ordered by increasing segment 

number.  
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Fig. S3. Schematic workflow used for analyzing small RNA-Seq. 

Using a modified version of the miRanalyzer pipeline, raw small RNA-Seq reads were clipped to 

remove the 3’ adapter sequence, collapsed into a canonical set of sequences and associated 

frequencies, and searched against databases of mature miRNA sequences, hairpin miRNA 

sequences, GENCODE mRNAs, and entries in the Rfam database. Reads that failed to match any 

of the previous databases but still could be aligned to the genome were retained to explore potential 

novel miRNA candidates. 
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Fig. S4. Quality assessment of single cell and single nuclei RNA-Seq. 

(A) Dependency between sequencing depth (log10 transformed) and detectable gene number 

(log10 transformed), as depicted by the green line. The horizontal and vertical dash lines indicate 

1,000 genes and 100,000 sequence depth, respectively. (B) Percentages of reads from the entire 

single cell dataset aligned to different chromosomes. The pink shaded area indicates the 

SEM±3SD. (C)(D)(E) and (F) are metrics of the single nuclei RNA-Seq generated from DFC of 

three adult brains using 10X Genomics chromium platform. (C) (D) and (E) Violin plots show the 

distribution of number of genes detected, total UMI counts and percent of reads aligning to 
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mitochondrial genome in each sample. (F) PCA plot of the single nuclei from the three brain 

samples. 
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Fig. S5. Overview of gene expression distribution and categories for mRNA-Seq. 

(A) Bar plots representing the percentage of protein-coding genes (filled bars) and non-coding 

genes (thatched bars) expressed at varying RPKM levels (RPKM ≥ 0.1, orange; RPKM ≥ 0.5, 

turquoise; RPKM ≥ 1, blue; RPKM ≥ 5, dark blue) in at least one sample in each region. The 11 

NCX areas are either combined (all) or averaged (mean). The last grouped bars (Total) are the 

combination of all 607 samples from 41 specimens. The genomic attributes of gene annotation 

were retrieved from GENCODE v21. (B) Pie chart representing the percentages of uniquely 

mapped reads aligned to protein-coding genes (blue), ncRNAs (orange), intronic (grey), and 

intergenic (yellow) regions. (C) Pie chart representing the percentages of ncRNA aligned reads 
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categorized into pseudogene (blue), lnRNA (orange), miRNA (grey), snRNA/snoRNA (yellow), 

and others (dark blue).  
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Fig. S6. Effect of DNA methylation data normalization on batch effects. 

(A) The distribution of p-values for batch effect over all probes in one-way ANOVA analysis using 

beta-values after Illumina standard normalization procedure. (B) The distribution of p-values for 

batch effect using beta-values after our normalization procedure showing that batch effect has been 

removed to a large extent, despite our normalization procedure not using any information about 

batch identity.  
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Fig. S7. Correlation between biological replicates for DNA methylation. 

Biological replicates for DNA methylation analysis correlated strongly with one another. 

Examples from A1C samples after the normalization procedure are shown here, with similar 

results observed with all other regions. 
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Fig. S8. Correlation between biological replicates for ChIP-Seq. 

Correlation between biological replicates of H3K4me3, H3K27me3, H3K27ac, and CTCF 

markers, respectively, in DFC samples (left panel) and CBC samples (right panel). H3K27me3 
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signals in chrX are shown in purple. HSB123 and HSB136 are males, HSB126 and HSB187 are 

females. The average correlation coefficients for the H3K4me3, H3K27ac, H3K27me3, and CTCF 

groups are 0.98, 0.87, 0.84, and 0.77, respectively. No obvious disparity between male and female 

samples was observed for H3K4me3, H3K27ac, and CTCF. 
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Fig. S9. Validation of gene expression differences.  

To confirm the validity of gene expression differences identified using RNA-Seq, we selectively 

conducted quantitative droplet digital PCR (ddPCR). In so doing, we validated the adult-enriched 

expression of PADI2 and UAP1L1 and the early fetal enriched expression of DGCR8.  
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Fig. S10. ChIP-Seq validation 

We identified region-specific H3K27ac peaks associated with neurodevelopmental genes 

including SATB2, CUX2, DNMT1, and FGF3. To validate these putative regulatory elements, we 

conducted quantitative ChIP-PCR on samples from the DFC (black bars) and CBC (grey bars), 

observed the expected regional specificity.  
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Fig. S11. Multidimensional scaling of global gene expression. 

(A) Scatter plot showing the first two multidimensional scaling components from the analysis of 

gene expression. Different colors encode different brain regions: NCX (blue), HIP (cyan), AMY 

(green), STR (purple), MD (orange), and CBC (red). The numbers indicate the associated 

development window for each brain sample, from W1 (1) to W9 (9). The majority of samples 

clustered into prenatal (W1-W4; left) or postnatal (W6-W9; right) groupings, with samples from 

W5 generally occupying an intermediate position between these groups. (B) Correlation of 

mRNA-Seq data to potential confounding factors. The top 10 multidimensional scaling 

components were correlated to 10 potential confounding or other factors: age, region, sequencing 

depth, pH, RIN, sex, ethnicity, brain hemisphere, sample dissection score, and sequencing 

processing site (Seq. site), with only age and region correlating strongly with specific dimensions.  

 



123 
 

 

Fig. S12. Multidimensional scaling of exon percent spliced in index. 

(A) Scatter plot showing the first two multidimensional scaling components from the analysis of 

the ratio between reads including or excluding exons, also known as percent spliced in index (PSI). 

Different colors encode different developmental phases: prenatal (W1-W4; blue), late fetal and 

early infancy (W5; gray), and postnatal (W6-W9; red). (B) Correlation of multidimensional scaling 

components to potentially confounding factors. The top 10 multidimensional scaling components 

were correlated to 10 potential confounding or other factors: age, region, sequencing depth, pH, 

RIN, sex, ethnicity, brain hemisphere, sample dissection score, and sequencing processing site 

(Seq. site). Here again, only age and region correlated strongly with specific components. 
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Fig. S13. Hierarchical clustering analysis of the human brain mRNA transcriptome. 

(A) Dendrogram of hierarchical clustering for 607 mRNA-Seq samples. The colors underneath 

label potential confounding factors including age (W1-W4, blue; late fetal samples, green; infancy-

W9, red), region (NCX, blue; HIP, cyan; AMY, green; STR, purple; MD, orange; CBC, red), 

sequencing depth (low to high shown in purple to red scale), tissue pH (low to high shown in blue 

to brown scale), RIN (low to high shown in blue to red scale), sex (blue, male; red, female), 

ethnicity (African, blue; African/European, cyan; Asian, orange; European, red; Mexican, purple), 

hemisphere (left, red; right, blue), dissection score (low to high shown in black to purple scale), 

and sequencing processing site (Yale, red; USC, blue). The samples clustered predominately by 

age and not by depth, pH, RIN, sex, ethnicity, hemisphere, dissection score, or sequencing 

processing site. Regional clustering is observed, particularly for NCX and CBC. (B) Circular tree 

showing unsupervised hierarchical clustering for 607 mRNA-Seq samples. Samples from prenatal 

ages (W1 - W4) are generally segregated from those samples from perinatal (W5) and postnatal 

ages (W6 – W9). Prenatal samples in W1 through W4 are in blue, postnatal samples are in red, 

and late fetal samples (35 and 37 PCW) are in green. 
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Fig. S14. Intraregional gene expression correlation across all developmental windows. 

For each of the 6 major brain regions we assayed, we used the expression values of the entire gene 

set to calculate Pearson correlations for any pair of development windows. Heatmap bubbles depict 

the strength of the correlation coefficient, with larger bubbles indicating a greater correlation. We 

found general conservation across exclusively prenatal (W1-W4) and exclusively postnatal (W6-

W9) windows but reduced correlation across W5 (i.e., between prenatal and postnatal windows). 

Grey cells with diagonal lines divide the matrix into upper and lower triangles corresponding to 

different brain regions, as listed. 
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Fig. S15. Temporal and spatial differential expression. 

(A) Stacked bar plots representing the number of differentially expressed genes for each brain 

region in each developmental window. The differentially expressed genes were categorized into 

temporal only (orange), spatio-temporal (green), and spatial only (blue). The definition of 

differentially expressed genes in each category is detailed in (22). (B) Bar plots of the number of 

temporally differentially expressed genes per brain region. (C) Bar plots of the number of spatially 

differentially expressed genes per developmental window. 
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Fig. S16. Principal component analysis adjusted for inter-individual variation (AC-PCA) for 

the mRNA-Seq data set. 

(A) AC-PCA plots of all developmental windows using gene expression values from 6 brain 

regions. (B) AC-PCA plots of all developmental windows using gene expression values from 11 

neocortex areas. Different brain regions and neocortex areas are differently colored or shaped as 
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indicated. For both all brain regions and the neocortex, the distance between brain regions or 

neocortical areas in the first two principal components was reduced during W5 as compared to 

other prenatal (W1-W4) or late postnatal (W9) ages.  



131 
 

 

 

Fig. S17. Length enrichment and multidimensional scaling for miRNAs. 

(A) Read length distribution of all samples in the small RNA-Seq dataset. (B) Correlation of 

multidimensional scaling components to potentially confounding factors. The top 10 

multidimensional scaling components were correlated to 9 potential confounding or other factors: 

age, region, sequencing depth, pH, RIN, sex, ethnicity, brain hemisphere, and sample dissection 

score. Only brain region correlated strongly with individual components. (C) Scatter plot showing 

the first two multidimensional scaling components from the analysis of miRNA expression. 

Different colors encode different brain regions: NCX (blue), HIP (cyan), AMY (green), STR 
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(purple), MD (orange), and CBC (red). The numbers indicate the associated development window 

for each brain sample.  
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Fig. S18. Alternative splicing analysis. 

(A) Spatio-temporal dynamics of alternative splicing in human brain transcriptome, with age 

represented as a log10 transformation of post-conception days along the X-axis. The solid vertical 
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line indicates birth. For any given gene, the standard deviation (SD) of exon percent spliced in 

index (PSI) accounts for its alternative splicing events, and the transcriptome-wide summarization 

of alternative splicing events is represented on the Y-axis by the averaged standard deviation of 

exon PSI of all genes in a given region. The shaded area for each curve corresponds to 50% 

standard error of the mean. Brain regions are differentiated by colors as indicated. (B) The number 

of genes exhibiting alternative splicing profiles is not constant across prenatal and postnatal 

development, with more genes alternatively spliced during prenatal ages than postnatal ages (P = 

0.007). (C) Bar plots representing the mean of exon PSI variation across 11 neocortical areas for 

both genes that are highly variable in the neocortex as well as control sets of background genes. 

Error bar is mean±SEM. (D) Read coverage of GRIN1 expression in 6 representative brain regions 

(DFC, HIP, AMY, STR, MD, and CBC) of HSB126, an adult brain specimen. Alternative splicing 

was observed in the inclusion or exclusion of exon 4, generating a 180 bp or 115 bp PCR product 

in the region shown within the red box, respectively. (E) Exon specific RT-PCR was carried out 

using primers 1 and 2 depicted in (D) in order to confirm the presence and differential expression 

of the 180 bp and 115 bp fragments. 
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Fig. S19. Temporal expression of the RNA-binding proteins. 

(A) Heat maps representing temporal dynamics of RNA binding protein (RBP) gene expression in 

6 brain regions across development. For each brain region, samples were ordered in accordance 
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with the age, spanning from embryonic age (W1) through young adulthood (W9). For each gene 

(taken from (24)), its expression is converted to a Z-score to exclude effects of genes with extreme 

expression. NCX is represented by DFC. (B) Violin plots of the Pearson correlation between RBP 

gene expression and the extent of gene alternative splicing in 6 brain regions. (C) Hierarchical 

clustering of RBP gene expression. The dendrogram shows two clusters, with W5 clustered with 

postnatal developmental windows (W6-9).  
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Fig. S20. t-SNE analyses of prenatal single cell RNA-Seq and adult single nuclei RNA-Seq. 
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(A-B) t-SNE plots showing the single cell RNA-Seq data set from embryonic (5-8 PCW; A) and 

fetal (16-20 PCW; B) donor brains. Different colors encode different cell types. (C) t-SNE plot 

showing single nuclei RNA-Seq data from adult human donor brains. Here again, different colors 

encode different cell types, with cell type nomenclature based on correlations to an independent 

dataset of adult single nuclei RNA-Seq (27). NEP/RGC: Neural epithelial progenitor/radial glial 

cells, NasN: Nascent neurons, IPC: intermediate progenitor cells, Astro: cells in the astroglial 

lineage, OPC: oligodendrocyte progenitor cells, Oligo: oligodendrocytes, ExN: excitatory 

neurons, InN: interneurons, Micro: microglia, Endo: endothelial cells, Peri: pericytes, VSMC: 

vascular smooth muscle cells. f before a cell type name indicates that these cell types were 

identified in fetal samples. 
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Fig. S21. tSNE representation of alternative clustering methods and brain effect 

t-SNE plots showing the single cell RNA-Seq data set from prenatal (5-20 PCW; A-C) and 

postnatal (D) donor brains. A) tSNE representation based on Seurat data processing colored by the 

clusters identified using the (27) methodology. B) tSNE plot colored by the clusters obtained by 

Seurat default clustering method at resolution 1.5. Numbers indicate the proportion of cells from 

clusters in A for any given cluster in B contributing at least 10% in the later. C-D) tSNE plots 
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colored by donor brain. NEP/RGC: Neural epithelial progenitor/radial glial cells, NasN: Nascent 

neurons, IPC: intermediate progenitor cells, OPC: oligodendrocyte progenitor cells, Oligo: 

oligodendrocytes, ExN: excitatory neurons, InN: interneurons, Astro: astroglial lineage. 
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Fig. S22. Heat map of known and novel cell type specific marker genes. 

Heat map showing the expression of cell type specific molecular markers. The five genes 

exhibiting the highest specificity score for the prenatal scRNA-Seq database are shown for each 
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cell type. Colors represent different cell types and are the same as in Fig. S18. NEP/RGC: Neural 

epithelial progenitor/radial glial cells, NasN: Nascent neurons, IPC: intermediate progenitor cells, 

OPC: oligodendrocyte progenitor cells, Oligo: oligodendrocytes, ExN: excitatory neurons, InN: 

interneurons, Astro: astroglial lineage. 
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Fig. S23. Alignment of prenatal and adult single cell RNA-Seq data sets. 

(A) t-SNE plot showing scRNA-Seq data of single cells dissociated from prenatal brains of age 5-

20 PCW (solid circle) and adult brains (hollow box) from the current study. Similar cell types (i.e., 

fetal astrocytes and adult astrocytes) tend to cluster in similar locations. Conversely, cell types 

without obvious homologues between fetal and adult development (i.e., NEP/RGC cells and IPCs) 

generally cluster in locations with few or no adult cells. (B) tSNE plot showing single cell RNA-
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Seq data from this study (closed circle) aligned with fetal and adult single cell data from Darmanis 

et al. (open square) (9). Confirming the validity of our dataset and cell type analyses, here again 

we see broad similarities in the positioning of similar cell types across datasets. For both panels, 

different colors encode different cell types. NEP/RGC: Neural epithelial progenitor/radial glial 

cells, NasN: Nascent neurons, IPC: intermediate progenitor cells, OPC: oligodendrocyte 

progenitor cells, Oligo: oligodendrocytes, ExN: excitatory neurons, InN: interneurons, Astro: 

astroglial lineage, with similar cell types generally clustering near each other. 
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Fig. S24. Expression distribution of excitatory neuron subtype marker genes. 

Violin plots showing the expression distribution of excitatory neuron subtype marker genes. Each 

column corresponds to one cell cluster identified in our scRNA-Seq data set or retrieved from Lake 

et al. (27). The first nine columns contain data from embryonic (columns 1 through 3) and fetal 

(columns 4 through 9) cells in the current dataset (Li et al.). Remaining columns are from Lake et 

al. (27). NasN: Nascent neurons, ExN: excitatory neurons. Numbers in the rightmost column 

indicate the maximum log2 (CPM + 1) values for each marker gene. 
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Fig. S25. Expression distribution of interneuron subtype marker genes. 

Violin plots showing the expression distribution of interneuron subtype marker genes. Each 

column corresponds to one cell cluster identified in our scRNA-Seq data set or retrieved from Lake 

et al. (27). The first eight columns contain data from embryonic (columns 1 through 3) and fetal 

(columns 4 through 8) cells in the current dataset. Remaining columns are from Lake et al. (27). 

NasN: Nascent neurons, InN: interneurons. Numbers in the rightmost column indicates the 

maximum log2 (CPM + 1) values for each marker gene.  
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Fig. S26. Co-expression of molecular markers including RELN and PCP4 
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(A) Comparison of CUX2 expressing (red), BCL11B expressing (green), and CUX2/BCL11B co-

expressing (yellow) mid-fetal and adult excitatory neurons (ExN), as identified from this study (Li 

et al.) or Lake et al. (27). (B) Comparison of CUX2 expressing (red), FEZF2 expressing (green), 

and CUX2/FEZF2 co-expressing (yellow) mid-fetal and adult excitatory neurons (ExN), as 

identified from this study (Li et al.) or Lake et al. (27). (C) tSNE plots of mid-fetal scRNA-Seq 

data showing various cell types detected in the fetal human brain (left) and the expression or co-

expression of RELN expressing (green), PCP4 expressing (red), and RELN/PCP4 co-expressing 

(yellow) cells (left). (D) tSNE plot for adult snRNA-Seq data in our study, again showing PCP4 

expressing, RELN expressing, and PCP4/RELN co-expressing cells. (E) Immunohistochemical 

staining confirms the co-expression of RELN and PCP4 by a subset of neurons in the fetal human 

brain. (F) co-expression of RELN and PCP4 is not readily detectable using immunohistochemistry 

in the adult human cortical plate.  
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Fig. S27: Deconvolution of neuronal layer maturation in human neocortex. 

Following the discrimination of excitatory neuron populations derived from an independent adult 

single cell dataset (27) into deep-layer (i.e., L5 and L6) and upper-layer (i.e., L1, 2/3, 4) subsets, 

we independently repeated the deconvolution analysis using layer-specific molecular markers and 

three fetal datasets: (A) scRNA-Seq generated in this study, (B) Nowakowski et al. (12) , and (C) 

Zhong et al. (26). The smoothed curves with shaded areas (50% confidence interval) represent the 

developmental dynamics of cell type composition, including layer-specific excitatory neurons, in 

the human brain neocortex. Age is represented as log10 transformed post-conception days along 

the x-axis, with the solid vertical line indicating birth and dashed lines distinguishing 

developmental windows W1 through W9. NPC: neural progenitor cells, ExN: excitatory neurons, 

InN: interneurons, Astro: astroglial lineage, oligo: oligodendrocytes, Endo: endothelial.  
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Fig. S28. Deconvolution of neural and non-neural cell content in neocortex. 

Transcriptomic signatures from single cell RNA-Seq were used to deconvolve bulk tissue RNA-

Seq data by estimating the cell type proportion of key neural and non-neural cell types. Each plot 

corresponds to one neocortical area. Smoothed curves with shaded areas (50% confidence interval) 

represent the cell type composition of human neocortical area across development. Age is 

represented as log10 transformed post-conception days along the x-axis, with the solid vertical line 

indicating birth and dashed lines distinguishing developmental windows W1 through W9. The 
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solid vertical line indicates the time of birth. Different colors mean different cell types. NPC: 

Neural progenitor cells, ExN: excitatory neurons, InN: interneurons, Astro: astroglial lineage, 

Oligo: oligodendrocytes, Endo: endothelial cells. 
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Fig. S29. Variation in cell type proportions across neocortical areas. 

Based on cell type deconvolution, we assessed variation and gradients in the proportions of discrete 

cell populations in the neocortex across developmental windows W2 to W9. Variation was 

calculated by comparing the cell type proportion of a given neocortical area with the average 

values of the remaining 10 neocortical areas, with putative gradients apparent for some cell 
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populations, as evidenced by the general progression of anatomically proximal neocortical areas 

along the Y-axi. Combination of color and symbol are used to differentiate 11 neocortical areas. 

NPC: neural progenitor cells, ExN: excitatory neurons, InN: interneurons, Astro: astrocytic 

lineage, Oligo: oligodendrocytes. 
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Fig. S30. Independent replication of deconvolution and cell composition analyses using 

alternate datasets. 

Deconvolution analyses of Fig.3C-E were replicated using independent published fetal single cell 

datasets from Nowakowski et al. (12); A-C) and Zhong et al. (26); D-F) . (A, D) Deconvolution of 

bulk tissue data using cell type enriched markers identified through single cell sequencing of both 

fetal and adult human brain neocortex (21). The smoothed curves with shaded areas (50% 

confidence interval) represent the developmental dynamics of cell type composition in the human 

neocortex. Ages are represented as log10 transformed post-conception days along the x-axis, with 

the solid vertical line indicating birth. (B, E) Maximum inter-areal variance across cell types 

for each window. (C, F) Neocortical areal variation in the transcriptomic signatures of each major 
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cell type assayed in each developmental window. NPC: neural progenitor cells, ExN: excitatory 

neurons, InN: interneurons, Astro: astroglial lineage, oligo: oligodendrocytes, Endo: endothelial. 
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Fig. S31. Gene Ontology enrichment analysis of top variable genes per window. The top 30 

FDR-corrected significant GO terms are shown for each window, clustered by their patterns of 

significance across windows. A selection of GO terms of special interest are highlighted in red.  
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Fig. S32. Characterization of DNA methylation analyses. 

(A) Proportion of DNA methylation sites with various levels of methylation (β values, arranged 

from highest to lowest) in genomic features such as TSSs (dark blue), introns (light blue), 

intergenic regions (dark green), and exons (light green), based on Gencode v21 annotation. The 

top bar shows the variation in the proportion of CpG sites at these different genomic features across 
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all DNA methylation levels. (B-C) Distribution of the DNA methylation signal with respect to (B) 

TSS and (C) the gene body. Genes were grouped by varying expression levels calculated from the 

mRNA-Seq data set. 
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Fig. S33. Genomic distribution of histone modifications and CTCF. 

Pie chart representing the proportions of genomic features where H3K4me3 (top), H3K27me3 

(second from top), H3K27ac (second from bottom), and CTCF (bottom) were enriched. Right hand 

panels show the distribution of signals from H3K4me3, H3K27me3, H3K27ac, and CTCF at TSSs, 

in the gene body of genes, and at the furthest downstream transcription end site (TES). Genes were 

grouped by varying expression levels calculated from RNA-Seq data. 
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Fig. S34. Relationship between regional gene expression and histone modifications.  

Relationships between gene expression and the regional enrichment of histone modification in the 

adult human brain as inferred from H3K4me3 (A), H3K27me3 (B), and H3K27ac (C) enrichment. 

N represents the number of peaks assigned to each category. The relative expression of genes in 

DFC (>0) relative to CBC (<0) is plotted on the Y-axis for genes associated with histone 

modifications present to a greater extent in the CBC (red) or DFC (blue), or where there is no 

significant difference in histone modification between DFC and CBC (grey). (D) Heat map 

showing regional enrichment of expression and all histone marks in genes. Genes were ordered by 

the regional enrichment of expression.  



162 
 

 

 

Fig. S35. Enrichment analyses of methylation trajectory and temporal regulated enhancers. 

(A) Enrichment of eight types of dynamic methylation trajectories compared to non-variable 

methylation sites in various genomic elements (light blue background), Neu+ or Neu- 

hypomethylated sites from Kozlenkov et al. (114) (green background), cell type specific genes 

identified from literature (red background), and selected gene ontology terms reflecting major 

neural biological processes (yellow background). (B) Enrichment of putative fetal or adult-specific 

enhancers compared to non-dynamic enhancers in methylation sites postnatally hypo or hyper-

methylated (red background), fetal or adult patterns of enhancer-associated gene expression 
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(brown background), Neu+ or Neu- hypomethylated sites from Kozlenkov et al. 2013 (green 

background, named NUM and GUM, respectively), cell type specific genes , (red background), 

and selected gene ontology terms reflecting major neural biological processes (yellow 

background). Solid color indicates significance (P<0.05 for all tests except for GO analysis, 

P<0.01), red indicates enrichment and blue, depletion. Size is proportional to the absolute logOR. 
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Fig. S36. Trajectories of WGCNA modular eigengenes. 

The spatio-temporal pattern for each WGCNA module was summarized by the trajectory of the 

modular eigengene values, in which the eigengene value is plotted against developmental days 

(Log10 transformed). The trajectories for NCX (blue), HIP (cyan), AMY (green), STR (purple), 

MD (orange), and CBC (red) samples are separated and smoothed by loess function in R software. 

Each circle represents one brain sample, and is differently colored according to anatomical region. 

The module index and the number of modular genes are indicated above each plot. The vertical 

solid lines indicate the time of birth. 
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Fig. S37. Integrative and multi-layered characterization of WGCNA modules. 

WGCNA modules were integrated using eigengene expression trajectories and the enrichment 

within modules for genes associated with various molecular, epigenetic, and disease associations. 

From left, the first panel shows the dendrogram with numbers, revealing how the 73 WGCNA 

modules were classified into four groups according to the occurrence of eigengene differences 

across brain regions (“Spatial”) or between prenatal and postnatal development in the neocortex 

(“Late fetal transition”). The second panel shows multiple heat maps, revealing the change rate 
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per module of the eigengene value from one window to the subsequent window. Black rectangles 

indicate the window where the highest rate of change occurs. The third panel shows the enrichment 

of modular genes in 24 prenatal scRNA-Seq clusters. The fourth panel shows the enrichment of 

modular genes in 1) methylation sites postnatally hypo (or hyper-) methylated, 2) Neu+ or Neu- 

hypomethylated sites (from Kozlenkov et al. (114)) (NUM and GUM, respectively), 3) genes 

associated to fetal or adult patterns of enhancer activity, and 4) sex-biased genes for either male or 

female in three different periods. The fifth panel shows modules enriched in genes associated with 

different diseases (light yellow) and other traits (grey). The last panel shows enrichment for genes 

contained in two modules (CD1, CD4) correlated with schizophrenia, autism spectrum disorder, 

and bipolar disorder (69). NEP/RGC: Neural epithelial progenitor/radial glial cells, NasN: Nascent 

neurons, IPC: intermediate progenitor cells, OPC: oligodendrocyte progenitor cells, Oligo: 

oligodendrocytes, ExN: excitatory neurons, InN: interneurons, Astro: astroglial lineage, ADHD: 

attention-deficit/hyperactivity disorder, ASD: autism spectrum disorder, SCZ: schizophrenia, BD: 

bipolar disorder, MDD: major depressive disorder, IQ: intelligence quotient, NEUROT: 

neuroticism, AD: alzheimer disease, PD: Parkinsons disease, HBA1C: glycated hemoglobin.  
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Fig. S38. Median sex-bias in modules enriched for genes exhibiting sexual dimorphism. 

(A) The median fold difference imputed between male (>0) and female (<0) gene expression for 

all genes in a given module was plotted on the Y-axis using a log2 scale. Grey shading indicates 

the interquartile range around the median fold difference. Modules were selected from those 

enriched for genes exhibiting sex-biased expression between W2-W4, W4-W6, and W6-W9. (B) 

The median fold difference for ME71, a module comprised of genes located on the Y-

chromosome, exhibited persistent male-biased expression. 
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Fig. S39. Distribution of sex bias. 

(A) Volcano plot showing the imputed fold difference in gene expression between males and 

females across all brain regions and the entirety of the developmental dataset on the X-axis and 

the significance of any difference along the Y-axis. No autosomal genes exhibited differential 

expression between males and females across all developmental times or brain regions. (B) 

Modules enriched for genes exhibiting sex-biased gene expression and the persistence of that 

enrichment across time. No autosomal module was enriched for genes exhibiting bias for a single 

sex (male or female) across W2-W4, W4-W6, and W6-W9. 

 



171 
 

 

Fig. S40. Identification of sex-DEX modules across various threshold criteria.  

We iteratively selected the 50, 100, 150, and 200 genes exhibiting the greatest sex-differential 

(sex-DEX) gene expression in at least two consecutive windows in at least one brain region. Shades 

of blue represent significant enrichment of a module for sex-DEX genes. Modules are arranged 

from those that exhibit spatio-temporal specificity (top) through those exhibiting spatial, temporal, 

or no spatial or temporal specificity (bottom).  
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Fig. S41. Enrichment of SNP-heritability traits in cis-regulatory elements. 

Partitioned linkage disequilibrium (LD) score regression analysis showing enrichment of SNP-

heritability of specific traits in different sets of putative regulatory elements (H3K27ac peaks). 

Solid color indicates significance for Bonferroni adjusted P-value, faint color indicates nominal 

significance. In each temporal category (fetal, infant, and adult), only peaks that are present in at 

least 2 samples of the given category are considered. Regional categories (pCTX, DFC, and CBC) 

include peaks present in at least 2 samples for that region, while specific regional categories 

(DFCsp and CFCsp) require also the total absence of the peak in the other brain region analyzed. 
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ASD: autism spectrum disorder, ADHD: attention-deficit/hyperactivity disorder, SCZ: 

schizophrenia, MDD: major depressive disorder, BD: bipolar disorder, AD: alzheimer disease, PD: 

Parkinsons disease, IQ: intelligence quotient, NEUROT: neuroticism, HGT: height, HBA1C: 

glycated hemoglobin. 
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Fig. S42. Enrichment of disease-associated genes in cell types. Enrichment analysis of traits and 

disease-genes identified from the integration of GWAS with Hi-C and H3K27ac data in clusters 

of cell types from human and macaque single-cell or single-nuclei data from fetal and adult and 

different brain regions. Red bars indicate significant p-values at FDR<0.05, corrected 
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independently by each region and species. (*) Adult macaque cells were classified into human 

adult clusters using Random Forest. For graphical representation, log10 P-values are capped at 25. 
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Fig. S43. Cell types enriched for disease-associated genes found in ME37.  

Cell type enrichment for the expression of genes in ME37 associated with neurological or 

psychiatric disorders. Dark red coloration indicates significance, with the size of the circle 

representing p-value adjusted for multiple testing on a log10 scale. The top row shows the 

enrichment of disease-associated gene expression among cell types identified in this study while 

the bottom row shows similar enrichment for cell types described by Lake et al. (27).  
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Additional Supplementary Information 

 

Supplementary Tables: 

 

Supplementary Tables are provided in a single Microsoft Excel file. 

 

Table S1. Specimen/sample metadata and quality control metrics for mRNAseq  

Metadata from the donors is presented, including developmental window, brain code, region code, 

hemisphere of samples, age, age counting as days, sex, ethnicity, postmortem interval (PMI), pH 

of cerebellum, dissection score, and sequencing center (Yale and USC). This table also shows the 

quality control metrics, including raw reads count, multiple mapping reads, mitochondrial (chrM) 

reads, ribosomal (rRNA) reads, transfer (tRNA) reads, uniquely mapped reads, reads classification 

to exon, intron and intergenic, sequencing quality assessment from FastQC, gene coverage 

uniformity, gene numbers at different RPKM levels, and correlation coefficients to same sample 

in exon array data set and to bio-replicates in the same developmental period.  

 

 

Table S2. Specimen/sample metadata and quality control metrics for smRNAseq 

Metadata from the donors is presented, including developmental window, brain code, region code, 

hemisphere of samples, age, age counting as days, sex, ethnicity, postmortem interval (PMI), pH 

of cerebellum, dissection score, sequencing center (Yale and USC), and raw reads count.  
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Table S3. Specimen/sample metadata and quality control metrics for scRNAseq 

Metadata from the donors is presented, including developmental window, cell code, brain code, 

region code, age, cell number, and cell type. This table also shows the quality control metrics, 

including raw reads count, uniquely mapped reads, percentage of uniquely mapped reads, 

percentage of mitochondrial (chrM) reads, ribosomal (rRNA) reads, transfer (tRNA) reads, reads 

classification to exon, intron and intergenic. 

 

 

Table S4. Specimen/sample metadata and quality control metrics for single nuclei RNAseq 

Metadata from the donors is presented, including developmental window, cell code, brain code, 

region code, age, sex, ethnicity, PMI, and PH. This table also shows the quality control metrics, 

including raw reads, uniquely mapped reads to genome/exon/transcriptome, cell number, median 

gene number and median UMI number. 

 

 

Table S5. Specimen/sample metadata for DNA methylation 

Metadata from the donors is presented, including developmental window, brain code, region code, 

age, age counting as days, sex, ethnicity, postmortem interval (PMI), pH of cerebellum.  

 

 

Table S6. Specimen/sample metadata for histone modification ChIP-Seq 

Metadata from the donors is presented, including developmental window, brain code, region code, 

age, age counting as days, sex, ethnicity, postmortem interval (PMI), pH of cerebellum.  
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Table S7. Temporal and spatial enrichment analyses for alternative spliced genes 

List of genes detected alternative splicing events is presented. For each brain region, the temporal 

difference was evaluated by comparing prenatal samples to postnatal samples. Only statistical 

significant brain regions are provided along with temporal enrichment and p-values. 

 

Table S8. List of genes for cell type signature  

 

Table S9. Gene Ontology analysis for top variable genes 

Top variable genes were identified in each window and a GO enrichment analysis was performed 

using the genes expressed at RPKM>1 in the corresponding window as background. P-values were 

corrected by false discovery rate using the Benjamini-Hochberg method. 

 

Table S10. Weighted gene co-expressed gene modules and spatio-temporal characterization 

List of 73 modules identified by weighted gene co-expression network analysis (WGCNA) with 

modular gene number, list of modular genes, and three types of spatio-temporal characterization, 

i.e., spatio-temporal patterns of six brain regions, transit from prenatal to postnatal (W4 to W5), 

spatio-temporal patterns of eleven neocortex areas. The interpretation of spatio-temporal pattern 

is concluded from statistical significance p values.  
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Table S11. Integrative and multi-layered enrichment analyses for weighted gene co-

expressed gene module 

List of enrichment analyses conducted for 73 WGCNA modules, including methylation 

trajectories, methylation sites cell type specific, enhancer, sex DEX genes, single cell clusters, and 

GWAS genes.  

 

 

Table S12. Enrichment of features in different categories of WGCNA modules.  

Multiple gene-set and cell type enrichment analysis into the 73 WGCNA co-expression modules. 

Indicated P-values are nominal.  

 

 

Table S13. Genes associated to disease via GWAS (List1) 

Lists of genes linked to GWAS loci for each disease. The type of association for each gene is 

indicated. Exonic, indicate that significant GWAS variants have an annotated variant effect (other 

than upstream or downstream gene variant, synonymous or intronic). Promoter indicates that the 

ChIP-Seq peak overlapping the GWAS significant region overlaps the gene TSS (+/- 1kb). NoInt 

indicates that the ChIP-Seq peak overlapping the GWAS significant region can only be linked to 

a gene by proximity to TSS. Hi-C indicates peaks associated to TSS via Hi-C data in either of the 

two datasets. 

 

 

Table S14. Genes associated to disease via GWAS (List2) 
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Lists of genes linked to GWAS loci for each disease. The type of association for each gene is 

indicated. Exonic, indicate that significant GWAS variants have an annotated variant effect (other 

than upstream or downstream gene variant, synonymous or intronic). Promoter indicates that the 

ChIP-Seq peak overlapping the GWAS significant region overlaps the gene TSS (+/- 1kb). NoInt 

indicates that the ChIP-Seq peak overlapping the GWAS significant region can only be linked to 

a gene by proximity to TSS. Hi-C indicates peaks associated to TSS via Hi-C data in both of the 

two Hi-C datasets. 

 

 

Table S15. Spike-ins RNAs and brain region barcode scheme 

(A) The spike-in RNA characteristics and concentration for sample tagging are shown. Each spike-

in master mix contains five different spike-in RNAs. ERCC-00025 (spike-in ID 4), ERCC-00108 

(spike-in ID 9), and ERCC-00123 (spike-in ID 10) are included to assess sequencing error rates. 

The ERCC number, approximate length (bases), % GC content, and designated use of the 

individual spike-in RNA are shown. (B) Combinations of two spike-in RNAs (ID 1, 3, 5, 6, 7, 8, 

11, or 12) are included to demarcate each neuroanatomical region. All spike-in RNAs were a 

generous gift of Dr. Mark Salit at The National Institute of Standards and Technology (NIST) (The 

External RNA Controls Consortium. 2005). 

 

 

Table S16. List of all primers and probes  

List of primers for ChIP-Seq validation by digital PCR and for splicing validation.  
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