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Overall Problem:
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In cancer, a few positively selected drivers amongst many passengers

In common disease, more variants associated & each has weaker effect,
But one wants to find key “functional” variant amongst many in LD



Overa" PrObIem: CAN YOU FIND THE PANDA?
Finding Key Variants in T N ) e o )y
Personal Genomes (RN

Millions of variants in a personal genome
Thousands, in a cancer genome
Different contexts for prioritization

In rare disease, only a few
high-impact variants are associated with disease

In cancer, a few positively selected drivers amongst many passengers

In common disease, more variants associated & each has weaker effect,
But one wants to find key “functional” variant amongst many in LD

Thus: Need to find & prioritize high impact variants.
Particularly hard for non-coding regions.
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Non-coding Annotations: Overview

Features are often present on multiple "scale” (eg elements and connected networks)

Sequence features, incl. Conservation

Large-scale sequence
similarity comparison

Functional Genomics

Chip-seq (Epigenome & seq. specific TF)
and ncRNA & un-annotated transcription

Signal processing of raw
experimental data:

» Removing artefacts
» Normalization
» Window smoothing
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What is Annotation? (For Written Texts?)

No. 4356 April 25, 1953 NATUR E.I

TUREEVOL 409 | 15 FEBRUARY 2001 |

wish to suggest a Istructure! for the salt

of deoxyribose nucleic' acid (D. JA.).  Thiz Intemational Human Genome Sequencing Consortium*

structure has novel features which are of considerable
biological interest.

* A partial list of authors appears on the opposite page. Affiliations are listed at the end of the paper.

The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution.
Here we report the results of an intemational collaboration to produce and make freely available a draft sequence of the human
genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

coordinate regulation of the genes in the clusters.

set of proteins (the ‘proteome’) encode
genome is more complex than those of invertebrates. This is due in
part to the presence of vertebrate-specific protein domains and
motifs (an estimated 7% of the total), but more to the fact that
vertebrates appear to have ged pre-existing comp intoa
richer collection of domain architectures.

® Although about half of the human genome derives from trans-
posable elements, there has been a marked decline in the overall
activity of such elements in the hominid lineage. DNA transposons
appear to have become completely inactive and long-terminal
repeat (LTR) retroposons may also have done so.
@ The pericentromeric and subtelomeric regions of chromosomes
are ﬁIled with large recent segmental duplications of ‘sequence from
1 in the g | duplication is much more
frequent in humans than in yeast, fly or worm.
® Analysis of the organization of Alu elements explains the long-
standing mystery of their surprising genomic distribution, and
suggests that there may be strong selection in favour of preferential
retention of Alu elements in GC-rich regions and that these ‘selfish’
elements may benefit their human hosts.
® The mutation rate is about twice as high in male as in female
meiosis, showing that most mutation occurs in males.
® Cytogenetic analysis of the sequenced clones confirms sugges-
tions that large GC-poor regions are strongly correlated with ‘dark
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Mutation recurrence
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Noncoding
annotations .
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Power (%)

Power, as an issue in driver discovery

0 200 400 600 800 1,000
Sample size

25,000 promoters

650-bp Binding
promoter site

—(HTE Y- {8— Rheinbay et al.

100,000 promoters
— DS A iy ARy —

25,000 promoters Better

annotation or
large number
450-bp of samples
promoter could help.

[Kumar & Gerstein, Nature ('17)]
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Background on computationally annotation

* Peak calling: 2 e G e
v'PeakSeq, SPP, MACS2, Hotspot ...
v ENCODE Encyclopedia

* Genome segmentation: partition the genome into regions (states) with distinct
epigenomic profiles, then assign each state a functional label.

v'ChromHMM: Multivariate Hidden Markov Model

v'Segway: Dynamic Bayesian Network Model

ChromHMM

7
|a
i

J. Emnst, M. Kellis. Nat. Protoc., 2017
» Supervised regulatory prediction: learn predictive models from labeled dataset of

regulatory elements.
v CSI-ANN: Time-Delay Neural Network —= - - N
R fumy
v RFECS: Random Forest : | s | T h
v DEEP: Ensemble SVM + Artificial Neural Network
v REPTILE: Random Forest
v' gkm-SVM: Gapped k-mer

A Preprocessing Input Data

Histone Modifications Mathematical Features Feature Space

CSI-ANN

N
Fisher Discriminant Analysis
Feature Extraction

* Target finding
v Ripple, TargetFinder, JEME, PreSTIGE, IM-PET

H.A. Firpi, D. Ucar, K. Tian. Bioinformatics, 2010
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High-throughput approaches to dissect enhancer function

Construct Tested in Detection Advantages Disadvantages
MPRA/ [ nd Cell lines . I
e Barcode  High BC multiplicit :
MPFD/ [ Enhancer | P | Reporter | BC Y] Mouse liver,  p i Ce 9 Quanitatve | EPisomal
CRE-seq Mouse retina
nd . Enhancer - Low multiplicity
STARR-seq | P | Reporter | Enhancerl:l Cell lines RNA-seq Quantitative Episamal
TRIP , C |sc]  JzH| Mouse ESCs  Sarcode Quantitative Low resolution
lTRl P_| Reporter | BC TR RNA-seq  Genomic context
) [ Low multiplicity
FACS-based  |.\] Reporter | P |amsceN P | reporter |1 Yeast FACS Semi-quantitative Episomal
g
FACS-based —_—
(FIREWACh) ILTRI Enhancerl P | Reporter | IUb HygroHI ILTRI Mouse ESCs FACS Chromosomal Not quantitative
FACS-based C
(SIF S::;e w' Enhancer | P | Reporter exﬁ’ﬁﬁt_gm Mouse ESCs FACS Chromosomal Not quantitative
. ) e
#“"~ Hprt genomic locus —=>ss
Fumitaka and Ahituv, Genomics, 2015
FIREWAChH SIF-Seq

Murtha, M, et al., Nat Methods, 2014

Dickel, DE, et al., Nat Methods, 2014

MPRA

Patwardhan RP, et al., Nat Biotech, 2009
Melnikov A, et al., Nat Biotech, 2012
Kheradpour P, et al, Genome Res, 2013
Birnbaum RY, et al, PLoS Genet, 2014

CRE-Seq

Kwasnieski JC, et al, PNAS, 2012
White MA, et al, PNAS, 2013
Kwasnieski JC, et al, Genome Res, 2014

MPFD
Patwardhan RP, et al., Nat Biotech, 2012
STARR-Seq

Arnold, CD, et al., Science, 2013
Arnold, CD, et al., Nat Genet, 2014
Shlyueva, D, et al, Mol Cell, 2014

TRIP
Akhtar, W, et al., Cell, 2013
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* Tools developed specifically for coding variants:
v'PolyPhen-2
v SnpEff
v SIFT
V..
* Tools developed specifically for noncoding variants:
v'RegulomeDB
v'HaploReg
v'DeepSEA
v GWAVA
V..
* Tools for both coding and noncoding variants:
v'CADD
v’ ANNOVAR
v'VEP

vFATHMM-MKL
Vo

Polyphen-2

DeepSEA

coding

Input

noncoding

Analysis Prediction Interpretation
Sequence
~Ma vy
Moty soun, W ARSI e e e e - :
raw mutp) -m\. s
aligrment, Idontity-based scorcs
et it Annctatio
gmémmﬁ MSA degth, CpG contat fgmn@m\
Prediction confidence

Output:
variant functionality
prediction

Output:
predicted chromatin
effect

Output:

predicted allele-
specific chromatin
profile

Pfam domain, residus velume

3D visualization

I.A. Adzhubei, et al. Nat. Methods, 2010

Functional-variant prediction

Input t
log(allele T/allele A)

30
20
10 I 2

oF

Compare

ueet 0@ @0 0@000@0
eayelelslelelclolololole)

Predict t

Training data:

ENCODE,
Roadmap Epigenomics
chromatin profiles

Train

—

Deep convolutional network
- (DeepSEA)

Input:
‘genomic sequences
(1,000 bp)

Input t

. . .GCGTGGGTACGCTTATTCGTCAAGCTTTAGCGT . . .
.. .GCGTGGGTACGCTTAATCGTCAAGCTTTAGCGT . . .

Variant position

J. Zhou, O.G. Troyanskaya, Nat. Methods, 2015
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Thoughts on Genome Annotation, Prioritizing Variants &
Application of these concepts in a disease context

e PsychENCODE

Background - RADAR
* Types of variants: Germline, - Adapts FunSeq approach to RNA
Somatic, &c

Prioritizes variants based on post-
transcriptional regulome using
ENCODE eCLIP

Types of annotations: peaks,
segmentations, model predictions

« Genomic covariates * Incorporates new features related
Music to RNA sec. struc & tissue specific
— effects
* Multi-scale peak callin

P 9 + uORFs

Matched Filter

FunSeq

+ Feature integration to find small
subset of upstream mutations that
potentially alter translation

Integrating cross-assay signal-track
patterns associated with enhancer

Trained on high throughput STARR-
seq experiments

LARVA & MOAT

+ Uses parametric beta-binomial
model, explicitly modeling
covariates

Non-parametric shuffles. Useful
when explicit covariates not
available.

Validation in many different contexts

Integrates evidence, with a “surprisal”
based weighting scheme.

Prioritizing variants within “sensitive
sites” (human conserved)

(Application)

Population-level analysis of
functional genomics data related
to mental disease

Single-cell deconvolution
explaining across-population
variation

Large QTL resource (~2.5M
eQTLs)

Regulatory network construction
using QTLs, Hi-C, & activity
relationships. Used to link GWAS
SNPs to genes.

Embedding the reg. network in a
deep-learning model (DSPN) to
predict psychiatric disease
phenotype from genotype and
transcriptome data.



Thoughts on Genome Annotation, Prioritizing Variants &
Application of these concepts in a disease context

Background

Types of variants: Germline,
Somatic, &c

Types of annotations: peaks,
segmentations, model predictions

Genomic covariates

Music

Multi-scale peak calling

Matched Filter

Integrating cross-assay signal-track
patterns associated with enhancer

Trained on high throughput STARR-
seq experiments

Validation in many different contexts

FunSeq

Integrates evidence, with a “surprisal”
based weighting scheme.

Prioritizing variants within “sensitive
sites” (human conserved)

- RADAR

» Adapts FunSeq approach to RNA

* Prioritizes variants based on post-
transcriptional regulome using
ENCODE eCLIP

* Incorporates new features related
to RNA sec. struc & tissue specific
effects

« uORFs

» Feature integration to find small
subset of upstream mutations that
potentially alter translation

LARVA & MOAT

* Uses parametric beta-binomial
model, explicitly modeling
covariates

* Non-parametric shuffles. Useful
when explicit covariates not
available.

e PsychENCODE
(Application)

» Population-level analysis of
functional genomics data related
to mental disease

« Single-cell deconvolution
explaining across-population
variation

« Large QTL resource (~2.5M
eQTLs)

» Regulatory network construction
using QTLs, Hi-C, & activity
relationships. Used to link GWAS
SNPs to genes.

« Embedding the reg. network in a
deep-learning model (DSPN) to
predict psychiatric disease
phenotype from genotype and
transcriptome data.



Summarizing the Signal:
"Traditional” ChipSeq Peak Calling

Chip

* Generate & threshold the
signal profile to identify
candidate target regions

- Simulation (PeakSeq),

Threshold

- Local window based Poisson
(MACS),

- Fold change statistics (SPP) ’
Potential Targets FErirme o r T [ THHr et 1

Normalized Control

Score against the control

Significantly Enriched Il L1
targets

Now an update: "PeakSeq 2" => MUSIC
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Multiscale Decomposition

Increasing Scale
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Multiscale Decomposition
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Thoughts on Genome Annotation, Prioritizing Variants &
Application of these concepts in a disease context

Background

Types of variants: Germline,
Somatic, &c

Types of annotations: peaks,
segmentations, model predictions

Genomic covariates

Music

Multi-scale peak calling

Matched Filter

Integrating cross-assay signal-track
patterns associated with enhancer

Trained on high throughput STARR-
seq experiments

Validation in many different contexts

FunSeq

Integrates evidence, with a “surprisal”
based weighting scheme.

Prioritizing variants within “sensitive
sites” (human conserved)

- RADAR

» Adapts FunSeq approach to RNA

* Prioritizes variants based on post-
transcriptional regulome using
ENCODE eCLIP

* Incorporates new features related
to RNA sec. struc & tissue specific
effects

« uORFs

» Feature integration to find small
subset of upstream mutations that
potentially alter translation

LARVA & MOAT

* Uses parametric beta-binomial
model, explicitly modeling
covariates

* Non-parametric shuffles. Useful
when explicit covariates not
available.

e PsychENCODE
(Application)

» Population-level analysis of
functional genomics data related
to mental disease

« Single-cell deconvolution
explaining across-population
variation

« Large QTL resource (~2.5M
eQTLs)

» Regulatory network construction
using QTLs, Hi-C, & activity
relationships. Used to link GWAS
SNPs to genes.

« Embedding the reg. network in a
deep-learning model (DSPN) to
predict psychiatric disease
phenotype from genotype and
transcriptome data.



Unique shape associated histone signals flanking
active enhancers identified through STARR-seq

H3K27ac DNase |

cleavage Histone marks

— H2AZ

—— H3K4me2
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o
_ Nucleosome occupancy
[
3 _
(o} o -
X ] -
o -
K ©
S S~
z

-1900 -1000 TFBS 1000 1900

Position relative to TFBS (bp)
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Matched Filter recognize shape patterns

! o8 Matched Filter *

v b | = y(n) r(n)
= — h(n) e 20
— [}
= I ) =
@ g Metaprofile s(n) T o
I Matched filter h(n)
| -06 Epigenetic Signal y(n) 20
0 N ; Matched filter score  r(n)
H H Positives
Score STARR-seq regulatory regions VS random negatives Negatives
Evaluate using ROC curve
H3K27ac " H3K4me1 , H3K4me2 , H3K4me3 H3K9ac g
w0
12 25 6 6
8
K “ : K . H3K4me3 H3K4me1
P 15 N ) ,
n 10
2 5 T : 2
5007100 0 100 200 300 400 500 600 B0 60 4020 0 20 40 60 80 100 %06 200 0 200 400 600 800 S0 300 200 600 1000 0 200 0 200 400 600
" H3K79me2 o H3K36me3 H4K20me1 . H3K27me2 H2Av
600 M 35
s 2 500 30 30
» 60 0 zz iz
300
. w° 200 :Z JZ 1.0
20 100 5 - '
n-|00 -50 0 50 100 150 l?30 =20 -10 o 10 20 30 40 0'4 3 -2 A [ 2 3 4 5 9|00 -50 0 50 100 150 950 60 40 -20 0 20 40 60 80 100 .. Promoter

— Enhancer

[ biorxiv.org/content/early/2018/08/05/385237 ]
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Integrate matched filter scores of multiple features

Model AUROC | AUPR
Random 0.96 (0.95)] 0.91 (0.79)
Forest

Ridge 10 .95 (0.94)] 0.90 (0.77)
Regression

Linear SVM| 0.96 (0.95)] 0.91 (0.78)
Naive 0.95 (0.93)]0.89 (0.72)
Bayes

Cross validation

. Promoter
— Enhancer

TP Rate

0.0
0.0

Integrated Models

. — 108

FP Rate

Precision

o
o°
o

1.0

Recall

[ biorxiv.org/content/early/2018/08/05/385237 ]

1.0

Large scale STARR-seq experiment data helps
to improve the performance of integrated model

0.8 -

H3K27ac
—0— H3K4me1

g
§ 0.6- —o— H3K4me2
E —o— H3K4me3
= e~ H3K9ac
~o- DHS
SVM

0.4

0.1 02 03 04 05 06 07 08 09
Percentage sample
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True Positive Rate

Validation with transgenic mouse enhancer assay

Test prom Inject fertilized eggs
DNA | Reporter
N\ gene ) W
1.0 forebrain 10 heart
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

80 02 04 o6 08 10°%0 02 04 06 08 10

10 limb 10 midbrain

0.8 0.8

0.6 0.6

0.4 0.4 - i\s/rznc
—— H3K4mel

0.2 0.2 T Hacimes
——— H3K9%ac
~—— DHS

0'?).0 0.2 0.4 0.6 0.8 1.0 0'%.0 0.2 0.4 0.6 0.8 1.0

Transplant to
surrogate mother

—_—

hindbrain

08
8
¢
o 06
2
‘@
&
5 04
2
=
0.2
= Matched Filter (area = 0.76)
e ChromHMM (area = 0.69)
0.0
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
midbrain
1.0
0.8
2
8
5 06
3
@
4
S 04
2
=
0.2
= Matched Filter (area = 0.79)
= ChromHMM (area = 0.71)
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

False Positive Rate

[ biorxiv.org/content/early/2018/08/05/385237 ]

Visualize
Reporter gene
Expression
In E115
embryos
limb
1.0
0.8
Q
&
o 06
2
=
&
o 04
2
=
0.2
) = Matched Filter (area = 0.81)
= ChromHMM (area = 0.75)
0.0
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
neural_tube
1.0
0.8
)
.
o 06
=
=
&
o 04
2
=
0.2
= Matched Filter (area = 0.78)
e ChromHMM (area = 0.71)
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
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Matched-Filter can be applied across different organisms

S - B MatchedFilter
O REPTILE
O RFECS
O DELTA
O CSIANN
31 Bm _
(@) —
g 5- -
:) o
z —
©
o
v
g
hindbrain limb midbrain neural tube

Compare Matched-Filter
performance with other state-

of-the-art methods
[ biorxiv.org/content/early/2018/08/05/385237 ]

20 p-Value = 5e-4
*kk

-
o

-
o

Fold Change

o

o

Negative Putative Enhancers

B vatched-Fiter
ChromHMM+Segway

0.15 0.10 0.05
Percentage overlapped with FANTOMS5 enhancers

0.00

K562

HepG2

GM12878

Validation using
transduction-based
reporter assay (H1-hESC,
HOS, A549 and TZMBL)

Compare overlap with
FANTOMS5 enhancers

0.0

0.1 0.2 0.3
Percentage of FANTOMS5 enhancers overlapped

I
~

24 - Lectures.GersteinLab.org



Constructing a high-confidence set of cell-specific enhancers

a)
DNase . — .« . M;A_._Llé_. -._._.;Al__*A e
H3K27ac ___AA__A__‘A‘L‘_“AA

H3K4me1
H3K4me3
b) ESCAPE Enhancers ——— T - e —
Enhancer-gene linkage e - =
from JEME & Hi-C
CRES —— - _ ....... _ ............ _ ................. — ................
TF 1 b|nd|ng mOtifS — L e . .‘,D L E Q.
TF 2 binding motifs — e e - b e e
; I s T S R RSP S
MatchedFilter Enhancer B R  — : .
1
c) Merge v } i
Merged MatchedFilter Enhancer —————— SEE—————— G .
Intersect with ESCAPE v l l
MatchedFilter-ESCAPE intersect A
Y L
MatchedFitter- * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

ESCAPE intersect
Intersect with cREs v
MatchedFilter-

—
ESCAPE-cRE intersect ! 1
Prune with TFBS v } ‘
TFBS-pruned Matched | |
.F||ter.ESCAPE.CRE Intersect ........................................................ - ................................................
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Thoughts on Genome Annotation, Prioritizing Variants &
Application of these concepts in a disease context

Background

Types of variants: Germline,
Somatic, &c

Types of annotations: peaks,
segmentations, model predictions

Genomic covariates

Music

Multi-scale peak calling

Matched Filter

Integrating cross-assay signal-track
patterns associated with enhancer

Trained on high throughput STARR-
seq experiments

Validation in many different contexts

FunSeq

Integrates evidence, with a “surprisal”
based weighting scheme.

Prioritizing variants within “sensitive
sites” (human conserved)

- RADAR

» Adapts FunSeq approach to RNA

* Prioritizes variants based on post-
transcriptional regulome using
ENCODE eCLIP

* Incorporates new features related
to RNA sec. struc & tissue specific
effects

« uORFs

» Feature integration to find small
subset of upstream mutations that
potentially alter translation

LARVA & MOAT

* Uses parametric beta-binomial
model, explicitly modeling
covariates

* Non-parametric shuffles. Useful
when explicit covariates not
available.

e PsychENCODE
(Application)

» Population-level analysis of
functional genomics data related
to mental disease

« Single-cell deconvolution
explaining across-population
variation

« Large QTL resource (~2.5M
eQTLs)

» Regulatory network construction
using QTLs, Hi-C, & activity
relationships. Used to link GWAS
SNPs to genes.

« Embedding the reg. network in a
deep-learning model (DSPN) to
predict psychiatric disease
phenotype from genotype and
transcriptome data.



Funseq: a flexible framework to determine
functional impact & use this to prioritize variants

Annotation (tf binding
sites open chromatin,
ncRNAs) & Chromatin
Dynamics

Conservation
(GERP, allele freq.)

Mutational impact
(motif breaking, Lof)

Network (centrality
position)

Non-coding annotation

o ® oo m ® SNV W Indel
o

l I \

\

\

\

\

\

Degree of negative selection

Motif disruptive score

breaking | \ |

| \ } :( )/

[ \

| | \ Degree of network centrality
Enhancer/

Promoter [ ‘

Khurana et al., Science ('13)]

[Fu et al., GenomeBiology ('14), ,
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Finding "Conserved” Sites in the Human Population:

Negative selection in non-coding elements based on
Production ENCODE & 1000G Phase 1

Broad Categories
Coding !

Genomic Avg ia

Enhancer .
| ancer | R Broad categories of
(Non-coding RNA) nCRNA- regulatory regions under

(DNase | hypersensitive sites) DHS h negative SEIECtion
(TFSS: Sequence-specific TFs) Related to:
(Transcription factor binding sites) TFBS ENCODE, Nature, 2012
. H Ward & Kellis, Science, 2012
| Chromatin Mu et al, NAR, 2011

Pseudogene —
]

[ I T 1 I T ]
056 058 060 062 064 0.66 0.68

Fraction of rare SNPs

Depletion of Common Variants
in the Human Population
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A

GenomicAvg 27M SNPs |

Synonymous | 0.12M

TFBS

Coding 0.27M

>
Missense | 0.15M

Enhancer

TFSS
General

Chromatin

'
Pseudogene | 57K —i
> '

Broad Categories

0.56 06

Fraction of rare SNPs

Sub-categorization possible

Specific Categories

TF Families (motifs)

Coding
HMG
Forkhead

050 055 060 065 0.70

because of better statistics from

1000G phase 1 v pilot

Differential
selective
constraints
among specific
sub-categories

[Khurana et al., Science (‘13)]
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SNPs which break TF motifs are under stronger selection

A Broad Categories
Genomic Avg  27M SNPs

Coding 0.27M

D
Missense [ 0.15M
Synonymous | 0.12M

UTR| 0.4M

Enhancer

DHS

TFSS

General

TFBS

Chromatin

Pseudogene
4

0.56 0.6 0.64 0.68
Fraction of rare SNPs

Specific Categories

TF Families (motifs)

Coding
HMG
Forkhead

050 055 060 065 0.70

SNPs Conserving vs. motifs

Forkhead
I iy

—r 1 1 1T 1T 1
0.0 0.2 0.4 0.6

Forkhead motif Motif breaking SNP
T chr1: 98,100,579
2.0
1.0
0.01=1 ==_01 <L
5 10 15

2 s

—r 11 1T 1 1
0.0 0.2 0.4 0.6

AP-2 motif T Motif breaking SNP
20 chr14: 99,849,316

1.01
0.0l =\

[Khurana et al., Science (‘13)]

30 - Lectures.GersteinLab.org



Power-law distribution

logP(k)‘ N -
(l

log(Frequency)

(‘\

-0 P(k)~k”
. 9. Hub
N
()
AN
—
log(Degree) &k

Hubs Under Constraint:
A Finding from the Network
Biology Community

High likelihood of
positive selection

Lower likelihood of
® positive selection

* More Connectivity, More Constraint: Genes & proteins that have a more central

position in the network tend to evolve more slowly and are more likely to be

essential.

* This phenomenon is observed in
many organisms & different kinds of networks

-yeast PPI - Fraser et al ('02) Science,

('03) BMC Evo. Bio.

- Ecoli PPI - Butland et al ('04) Nature
-Worm/fly PPI - Hahn et al ('05) MBE
-miRNA net - Cheng et al ('09) BMC Genomics

@)

©)

Not under positive
selection

No data about
positive selection
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HOT region .
Sensitive region

Polymorphisms

wa = 1 + palogopa + (1 = pa)log, (1 = pa)

Info. theory based method (ie
annotation “surprisal”) for weighting
consistently many genomic features

« Practical web server
» Submission of variants & pre-

 Note: This online web server s based on Funseq2
v2.10.

s BT computed large data context from
Blm | e uniformly processing Iarge-scale
B = datasets

Um-cpedﬁcwww
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Thoughts on Genome Annotation, Prioritizing Variants &
Application of these concepts in a disease context

Background

Types of variants: Germline,
Somatic, &c

Types of annotations: peaks,
segmentations, model predictions

Genomic covariates

Music

Multi-scale peak calling

Matched Filter

Integrating cross-assay signal-track
patterns associated with enhancer

Trained on high throughput STARR-
seq experiments

Validation in many different contexts

FunSeq

Integrates evidence, with a “surprisal”
based weighting scheme.

Prioritizing variants within “sensitive
sites” (human conserved)

- RADAR

» Adapts FunSeq approach to RNA

* Prioritizes variants based on post-
transcriptional regulome using
ENCODE eCLIP

* Incorporates new features related
to RNA sec. struc & tissue specific
effects

« uORFs

» Feature integration to find small
subset of upstream mutations that
potentially alter translation

LARVA & MOAT

* Uses parametric beta-binomial
model, explicitly modeling
covariates

* Non-parametric shuffles. Useful
when explicit covariates not
available.

e PsychENCODE
(Application)

» Population-level analysis of
functional genomics data related
to mental disease

« Single-cell deconvolution
explaining across-population
variation

« Large QTL resource (~2.5M
eQTLs)

» Regulatory network construction
using QTLs, Hi-C, & activity
relationships. Used to link GWAS
SNPs to genes.

« Embedding the reg. network in a
deep-learning model (DSPN) to
predict psychiatric disease
phenotype from genotype and
transcriptome data.



RNA Binding Proteins (RBPs)

a RBP acting on RNA b RNA ac

omain

Processing Stability Localization Functi%

Modification Translation Interac

Nature Reviews | Molecular Cell Biology
2018 May;19(5):327-341. doi: 10.1038/nrm.2017.130. Epub 2018 Jan 17.

400 —

300 —

200 —

length (Mbp)

100 —

[Zhang*, Liu* et al., Genome Biology (in review ‘18)]

ting on RBP

5

tion Stability

25 Mbp (47%)
Not Overlapped

eCLIP Overlapping
Trans. Reg. Annotation

eCLIP

Unique to
RNA
Regulome

o

-

g

Density

Before ENCODE3: >150 expt.
in many different cell types

ENCODES3 did ~350 focused eCLIP expt.

for >110 RBPs on HepG2 & K562
(Van Nostrand...Yeo. Nat. Meth. '16;

Van Nostrand...Graveley, Yeo
(submitted in relation to ENCODE3))

ENCODE 3 - eCLIP peaks

O RBP eCLIP
Trans. Reg. Annotation (TF)

! | 1

500
Average Peak Length (bp)

50
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Schematic of RADAR Scoring

74 H K M R G
312 eCLIP 472 shRNA 79 RNA Secondary
{KGldala profiles RNA-Seq Bind-n-Seq Structure CERE

- - - - - )
= = = — — =
T T L

Cross Pop. Binding Gene-RBP . .

Conservation Hubs Association Motif Disruption

E G M
Expression Gene Mutation
I
I | |
Regulation Differential Mutation
Potential Expression Burden

=
5 2

(4}
7)) C
P D
q>) Pre-Built Tissue-specific O
— Data Context Data Context o
c @
) o
=
; Context Selection & Context Selection & (@)

i T®§ Score Combination Score Combination
SUniversal SFu/I
=wV+wH+K+
W1M+R2+G =SUn/'versal+E+G+M
3
Data and Procedure Context Selection & Score Combination
inputioutet [ Binding Hubs ~ - Motif Disruption
() Tissue-specific (Optional) { = Cross Pop. Conservation |+ Gene-RBP Association I GERP P
Level * Regulation Potential Level * Mutation Burden Level ‘ - RNA Secondary Structure
|:] Procedure L - Differential Expression
w, . i
S Pre-collected data ! Feature Weights

[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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RNA Structure Cons. from Evofold
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Co-binding of RBPs form biologically relevant complexes

Literature supported RBP complexes

Splicing Regulator - - - Splicing

branch pont ]

Poly()Tail

Intron Intron
Ribosome Interaction

pr— o

Splicing U2AF2  U2AFL

£

ot ﬂ

Unique co-binding patterns of RBPs

50
oo
B®
33
32

FAM120A

Binding hubs are enriched for rare variants

|
0oo

(Hotness)
|

Hub Number

Chromosome 1

[Zhang*, Liu* et al., Genome Biology (in review ‘18)]

Rare DAF

Normal Hot Region Ultra-Hot Region
.

Hub Number (Hotness)
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Validation for Somatic Variants:
RADAR Scores enriched in COSMIC genes & recurrently mutated regions
+ higher for tissue matched context

Fraction of variants in BRCA

B COSMIC genes
O non-COSMIC genes

>3.0 >32 >34 >36 >38 >40 >42 >44 >46

Universal Score

Fraction of variants in BRCA

0.05

0 0.15 0.20

0.1

0.00

B Reccurent Peaks
O non-Reccurent Peaks

>2.0 >2.2 >2.4 >2.6 >2.6 >3.0 >3.2 >3.2 >3.6 >3.6 >4.0

Universal Score

39 - Lectures.GersteinLab.org



Thoughts on Genome Annotation, Prioritizing Variants &
Application of these concepts in a disease context

Background

Types of variants: Germline,
Somatic, &c

Types of annotations: peaks,
segmentations, model predictions

Genomic covariates

Music

Multi-scale peak calling

Matched Filter

Integrating cross-assay signal-track
patterns associated with enhancer

Trained on high throughput STARR-
seq experiments

Validation in many different contexts

FunSeq

Integrates evidence, with a “surprisal”
based weighting scheme.

Prioritizing variants within “sensitive
sites” (human conserved)

- RADAR

» Adapts FunSeq approach to RNA

* Prioritizes variants based on post-
transcriptional regulome using
ENCODE eCLIP

* Incorporates new features related
to RNA sec. struc & tissue specific
effects

« uORFs

» Feature integration to find small
subset of upstream mutations that
potentially alter translation

LARVA & MOAT

* Uses parametric beta-binomial
model, explicitly modeling
covariates

* Non-parametric shuffles. Useful
when explicit covariates not
available.

e PsychENCODE
(Application)

» Population-level analysis of
functional genomics data related
to mental disease

« Single-cell deconvolution
explaining across-population
variation

« Large QTL resource (~2.5M
eQTLs)

» Regulatory network construction
using QTLs, Hi-C, & activity
relationships. Used to link GWAS
SNPs to genes.

« Embedding the reg. network in a
deep-learning model (DSPN) to
predict psychiatric disease
phenotype from genotype and
transcriptome data.



cap

Upstream open reading frames (UORFs) regulate
translation are affected by somatic mutation

5’ UTR main coding sequence 3’ UTR polyA .
| I I I 1 ® UORFs regulate the translation of downstream
e ARAAAA coding regions.
u u . . .
[Calvoetal, PNAS (09)] e This regulation may be altered by somatic
Fegieln® mutation in cancer.
uORF coding ORF .
' 2 e |n Battle et al. 2014 data uORF gain & loss
—a——— assoc. protein level change.
Initiation at No initiation at uORF.
.\ uORF A 43S “leaks” by. [ uORF gain
—.:l—i:l— - s> — L F I UORF loss [McGillivray et al., NAR (‘18)]
3 \ 5= v o
g g g 1 " " B - - - ﬁ $
= = 3= o
v g"g .‘A‘ 3 0 T -- - --- - - - ---
— e {—— = £ )
v 3
D
No translation of Translation of : : g g . : . . . . :
protein-coding ORF protein-coding ORF 10 11 12 13 14 15 16 17 18 19 20
[Ferreira et al., Bioengineered (‘14)] # study subjects increasing power
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ribosome profilng labeled uORFs

From a “Universe” of
1.3 M pot. uORFs

The population of functional
uORFs may be significant

functional uORFs
population size unknown

ribosome profiling labeled uORFs
known population size

high false negative rate

high false positive rate

&

all uORFs all uORFs
e Ribosome profiling experiments have
low overlap in identified uORFs.
e This suggests high false-negative rate,

and more functional uORFs than

currently known.

[McGillivray et al., NAR (‘18)]
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Prediction & validation of
functional uORFs using 89 features

e All near-cognate start codons predicted.

e (Cross-validation on independent ribosome
profiling datasets and validation using in vivo
protein levels and ribosome occupancy in
humans (Battle et al. 2014).

— training validation ROC
=

& o4 union @

T | Dintersection Gao,

é 0.3

g ____________________ [ ——

a 0.24 @‘

53 |-h AUC 0.82

ho‘o_woootq:uo'?ow """""""""" T
LOGETRRS2% -

start codon S x

[McGillivray et al., NAR (‘18)]

ribosome profiling
UORFs

l extract 89 feature attributes |

| discretize feature values |

| train classifier |

v

| score UORFs |

v

| threshold scores |

‘eéative uORE:? positive uORFs

| validation |

KS statistic
0 Oil Oi2 0i3 0i4 0i5

log(expression level)

GTEX tissue entropy

\ J ]

4 N

w

log(# codons)

N

=

—

log(GERP score)

# internal ATG (start) codons

Expr.
Level

Tissue
Dist.

Conser-
vation
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A comprehensive catalog of functional uORFs

Epositive score
Onegative score

total predicted positive 60, 2-voted positive
unlabeled Dpredicted positive 1.8X10° } §
8x10° dlmd]jﬂjj H HH]
: 0 L
Universe of 1 .3M £ ‘ d”H“ @ @ @
o i
UORFs scored via = o —=d O e o v 1-voted positive

70% 71% 72%

Slmple Bayes algo' 1746/2485 1228/1738 705/976

score

| sl

-

#UORFs

® 180K.: Large predicted positive set

e Predicted functional uORFs may be intersected likely to affect translation

with disease associated variants. _ ,
e (Calibration on gold standards,

suggests getting ~70% of known

[McGillivray et al., NAR (“18)]
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Thoughts on Genome Annotation, Prioritizing Variants &
Application of these concepts in a disease context

Background

Types of variants: Germline,
Somatic, &c

Types of annotations: peaks,
segmentations, model predictions

Genomic covariates

Music

Multi-scale peak calling

Matched Filter

Integrating cross-assay signal-track
patterns associated with enhancer

Trained on high throughput STARR-
seq experiments

Validation in many different contexts

FunSeq

Integrates evidence, with a “surprisal”
based weighting scheme.

Prioritizing variants within “sensitive
sites” (human conserved)

- RADAR

» Adapts FunSeq approach to RNA

* Prioritizes variants based on post-
transcriptional regulome using
ENCODE eCLIP

* Incorporates new features related
to RNA sec. struc & tissue specific
effects

« uORFs

» Feature integration to find small
subset of upstream mutations that
potentially alter translation

LARVA & MOAT

* Uses parametric beta-binomial
model, explicitly modeling
covariates

* Non-parametric shuffles. Useful
when explicit covariates not
available.

e PsychENCODE
(Application)

» Population-level analysis of
functional genomics data related
to mental disease

« Single-cell deconvolution
explaining across-population
variation

« Large QTL resource (~2.5M
eQTLs)

» Regulatory network construction
using QTLs, Hi-C, & activity
relationships. Used to link GWAS
SNPs to genes.

« Embedding the reg. network in a
deep-learning model (DSPN) to
predict psychiatric disease
phenotype from genotype and
transcriptome data.



Cancer Somatic Mutation Modeling

PARAMETRIC MODELS

» Suppose there are k genome

Model 1: Constant Background
Mutation Rate (Model from
Previous Work)

x; * Binomial(n;,p)

elements. For element /i, define:
— n;: total number of nucleotides

— x;: the number of mutations within the
element

Model 2a: Varying Mutation Rate
with Single Covariate Correction
x; + Binomial(n;,p;)

D; ¢ Beta(,u|Rl-,a|Ri)

,u|Rl-, O'|RL- : constant within the same
covariate rank

— p: the mutation rate
— R;: the covariate rank of the element

» Non-parametric model is useful
when covariate data is missing for
the studied annotations

» Also sidesteps issue of properly

Model 2b: Varying Mutation Rate
with Multiple Covariate Correction
x; + Binomial(n;,p;)

p; ¢ Beta(,u|Rl-,a|Ri)

,u|Rl-, O’lRi : constant within the same
covariate rank

identifying and modeling every
relevant covariate
(possibly hundreds)

[Lochovsky et al. NAR ('15)]

Assume constant background
mutation rate in local regions.

Model 3a: Random
Permutation of Input

Annotations
Shuffle annotations within local

region to assess background
mutation rate.

Model 3b: Random
Permutation of Input Variants
Shuffle variants within local
region to assess background
mutation rate.

[Lochovsky et al. Bioinformatics in press]
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MOAT-a: Annotation-based permutation

% annotation
W permutations

| = original variants
d_max

>

- - o] - w— = ==

.

[Lochovsky et al. Bioinformatics in press]
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MOAT-v: Variant-based Permutation

Can preserve tri-nt context in shuffle

bin width W

% annotation

| = original variants
- = permuted variants

W=72%d _max

L

=

I
I
I
I
I
I
I
I
I
1

[Lochovsky et al. Bioinformatics in press]
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MOAT-s: a variant on MOAT-v

* A somatic variant simulator

» Given a set of input variants, shuffle to new locations, taking genome structure into
account
|

original variants

o L = permuted variants
Binning whole genome

Marking equivalence classes (bins with similar covariate vectors)

Overlaying variants (with tri-nucleotide indexing)

I | l | | | | [ |
: 2. 2 333 33 4444444 55 6 7
Shuffling variants R ——— .
| L g1 ¢ B ey A ¢ L |
2 5 1 43 3444343 4 2 6 5 7
443

[Lochovsky et al. Bioinformatics in press]
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[Lochovsky et al. NAR ('15)]

LARVA Model Comparison

» Comparison of mutation count frequency implied by the binomial model (model 1) and the
beta-binomial model (model 2) relative to the empirical distribution

» The beta-binomial distribution is significantly better, especially for accurately modeling
the over-dispersion of the empirical distribution

density
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[Lochovsky et al. NAR ('15)]

adjusted P w/. correction

4.5

20 25 3.0 35 4.0

15

LARVA Results

TSS LARVA results
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O TP53 o

These have
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o LMO3 cancer associations
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noncoding annotation
p-values in sorted order
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MOAT: recapitulates LARVA
with GPU-driven runtime scalability

Computational efficiency of MOAT's
SLC3A1 Cysteine transporter SLC3A1 promotes breast cancer 28382174 NVIDIATM CUDATM VerS|On, W|th

tumorigenesis

ADRA2B  reduce cancer cell proliferation, invasion, and migration 25026350 res peCt tO th e num be r Of pel"m UtatIOn S y
SIL1 subtype-specific proteins in breast cancer 23386393 : :
TCF24  NA NA is dramatically enhanced compared to
AGAPS significant mutation hotspots in cancer 25261935 ;
TMPRSS13 | Type II transmembrane serine proteases in cancer and viral 19581128 CPU version.

infections

EROIL Overexpression of EROI1L is Associated with Poor Prognosis 26987398

of Gastric Cancer - FOId speedup Of
: nermutations CUDA version

MOAT’s high mutation burden elements 1k 14x
recapitulate LARVA's results & published 10k 100x
noncoding cancer-associated elements.

100k 256X
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Thoughts on Genome Annotation, Prioritizing Variants &
Application of these concepts in a disease context

Background

Types of variants: Germline,
Somatic, &c

Types of annotations: peaks,
segmentations, model predictions

Genomic covariates

Music

Multi-scale peak calling

Matched Filter

Integrating cross-assay signal-track
patterns associated with enhancer

Trained on high throughput STARR-
seq experiments

Validation in many different contexts

FunSeq

Integrates evidence, with a “surprisal”
based weighting scheme.

Prioritizing variants within “sensitive
sites” (human conserved)

- RADAR

» Adapts FunSeq approach to RNA

* Prioritizes variants based on post-
transcriptional regulome using
ENCODE eCLIP

* Incorporates new features related
to RNA sec. struc & tissue specific
effects

« uORFs

» Feature integration to find small
subset of upstream mutations that
potentially alter translation

LARVA & MOAT

* Uses parametric beta-binomial
model, explicitly modeling
covariates

* Non-parametric shuffles. Useful
when explicit covariates not
available.

e PsychENCODE
(Application)

» Population-level analysis of
functional genomics data related
to mental disease

« Single-cell deconvolution
explaining across-population
variation

« Large QTL resource (~2.5M
eQTLs)

» Regulatory network construction
using QTLs, Hi-C, & activity
relationships. Used to link GWAS
SNPs to genes.

« Embedding the reg. network in a
deep-learning model (DSPN) to
predict psychiatric disease
phenotype from genotype and
transcriptome data.



Multi-omics of PsychENCODE & other consortia to
understand functional genomics in brain disorders

2500- Source 18025
M rEC »
2040 DGTEX _1500°§ Total Number of Individuals = 1866
2000- H Roadmap 14012 S 1039

@ Published Single Cell é ]
2 1632 8 °
£ 1500- g 5
a 1362 100008 2
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] -5000 g
o 3
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< o [are & Control scz BPD ASD AFF
» Brain transcriptome and
epigenome
Tissue Z;‘T—'@nﬂrc (26,769 hd Slngle Ce" dGCOﬂVOlUtIOﬂ

+ QTL

» Regulatory network

» Deep Neural Network for
predicting disorders

Cerebellum - CB (348)

Temporal Cortex - TC (2,153)
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Total extent of transcription across

the cohort of individuals

Brain specific transcriptome and epigenome from

comparative analysis

=)

1

¢ Reference Brain
Il PsychENCODE Brains
0.5 A
Ext Brains
M Cortex
Cerebellum
0.0 A Other tissues
| Lung
| Skin 8
el M Testis 1
¢ Non-coding
1.0 Coding -2
-1.0 0.0 1.0
Average extent of transcription in an individual

&

0

PC1

0.2

0.1

PC2

-0.1

-0.2

-0.5 -0.25 0 0.25

PC1

o
)

Epigenome
(~79,000 brain enhancers)
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1866 individuals 25 top components

U o £ 1866 individuals
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24 selected cell types

1866 individuals (Neuronal, , Developmental)
1866 individuals
& Bulk Deconvolution 2 8
@ | expression ~ g % B
- s| ® = g
Slngle ce" i = §§ Cell fractions (W)
deconvolution N

Single cell expression (C)

Step 2: supervised
learning to estimate cell
fractions

/|B[ > 88%+4%

Standardized gene expression
o

Individual and cross-population reconstruction
accuracy via deconvolution

57 - Lectures.GersteinLab.org



Number of eGenes

Larger Brain eQTL sets than previous studies
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Numbers eGenes

Qfls  Celiypes multi-QTLs
eQTL | 2,542,908 | 32,944 | 1,341,182
isoQTL 2,628,259 = 19,790 | 1,052,939

cQTL* 8,464 8,484 7,983
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Deep Structured Phenotype Network (DSPN)

DSPN Boltzmann machine

Traits

® y: phenotypes

Gene regulatory
network builds

Higher-order

™ h: hidden units (e.g., circuits)
DSPN skeleton S S
000 000 | |
"YY IR X X =S SN : intermediate phenotypes
""""""""""""""""""""""""""""""""""""""""" —  (e.g., genes, enhancers)
— z: genotypes (e.g., SNPs)
Energy model: — e exression
p(xy,hiz) o< exp(=E(x v, hiz)) ek T e W: weights (e.g., regulatory
S \ﬁ%ﬁ(/‘vglety network)
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DSPN improves brain
disease prediction by
adding deep layers

Lic/d

DSPN

L1a/b
Method LR-genotype LR-transcriptome cRBM DSPN- DSPN-full
imputation
Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%
Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%
Autism Spectrum 50.0% 51.7% 67.2% 62.5% 68.3%
Disorder . ,
T
X 6.0

Accuracy = chance to correctly predict disease/health

L2b

L2a
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DSPN improves brain
disease prediction by
adding deep layers

Lic/d

DSPN

L1ab
Method LR-genotype LR-transcriptome cRBM DSPN- DSPN-full
imputation
Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%
Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%
Autism Spectrum 50.0% 51.7% 67.2% 62.5% 68.3%
Disorder . ,
X25

Accuracy = chance to correctly predict disease/health

L2b

L2a
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DSPN improves brain
disease prediction by
adding deep layers

Lic/d

DSPN

L1a/b
Method LR-genotype LR-transcriptome cRBM DSPN- DSPN-full
imputation
Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%
Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%
Autism Spectrum 50.0% 51.7% 67.2% 62.5% 68.3%
Disorder ) ,

|
X 31

Accuracy = chance to correctly predict disease/health

L2b

L2a
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DSPN discovers molecular pathways from genotype

Ranking score

Functional categories
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Thoughts on Genome Annotation, Prioritizing Variants &
Application of these concepts in a disease context

Background

Types of variants: Germline,
Somatic, &c

Types of annotations: peaks,
segmentations, model predictions

Genomic covariates

Music

Multi-scale peak calling

Matched Filter

Integrating cross-assay signal-track
patterns associated with enhancer

Trained on high throughput STARR-
seq experiments

Validation in many different contexts

FunSeq

Integrates evidence, with a “surprisal”
based weighting scheme.

Prioritizing variants within “sensitive
sites” (human conserved)

- RADAR

» Adapts FunSeq approach to RNA

* Prioritizes variants based on post-
transcriptional regulome using
ENCODE eCLIP

* Incorporates new features related
to RNA sec. struc & tissue specific
effects

« uORFs

» Feature integration to find small
subset of upstream mutations that
potentially alter translation

LARVA & MOAT

* Uses parametric beta-binomial
model, explicitly modeling
covariates

* Non-parametric shuffles. Useful
when explicit covariates not
available.

e PsychENCODE
(Application)

» Population-level analysis of
functional genomics data related
to mental disease

« Single-cell deconvolution
explaining across-population
variation

« Large QTL resource (~2.5M
eQTLs)

» Regulatory network construction
using QTLs, Hi-C, & activity
relationships. Used to link GWAS
SNPs to genes.

« Embedding the reg. network in a
deep-learning model (DSPN) to
predict psychiatric disease
phenotype from genotype and
transcriptome data.



Thoughts on Genome Annotation, Prioritizing Variants &
Application of these concepts in a disease context

e PsychENCODE

Background - RADAR
* Types of variants: Germline, - Adapts FunSeq approach to RNA
Somatic, &c

Prioritizes variants based on post-
transcriptional regulome using
ENCODE eCLIP

Types of annotations: peaks,
segmentations, model predictions

« Genomic covariates * Incorporates new features related
Music to RNA sec. struc & tissue specific
— effects
* Multi-scale peak callin
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Matched Filter

FunSeq

+ Feature integration to find small
subset of upstream mutations that
potentially alter translation

Integrating cross-assay signal-track
patterns associated with enhancer

Trained on high throughput STARR-
seq experiments

LARVA & MOAT

+ Uses parametric beta-binomial
model, explicitly modeling
covariates

Non-parametric shuffles. Useful
when explicit covariates not
available.

Validation in many different contexts

Integrates evidence, with a “surprisal”
based weighting scheme.

Prioritizing variants within “sensitive
sites” (human conserved)
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Population-level analysis of
functional genomics data related
to mental disease
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explaining across-population
variation

Large QTL resource (~2.5M
eQTLs)

Regulatory network construction
using QTLs, Hi-C, & activity
relationships. Used to link GWAS
SNPs to genes.

Embedding the reg. network in a
deep-learning model (DSPN) to
predict psychiatric disease
phenotype from genotype and
transcriptome data.



PsyChENCODE Daifeng Wang, Shuang Liu, Jonathan Warrell, Hyejung Won, Xu Shi, Fabio Navarro, Declan
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The Psych ENCODE Consortium: Alison E Ashley-Koch, Duke University; Gregory E Crawford, Duke University; Melanie E Garrett, Duke University; Lingyun Song, Duke University; Alexias Safi, Duke University; Graham D Johnson, Duke University;
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Flatow, Icahn School of Medicine at Mount Sinai; Gabriel E Hoffman, Icahn School of Medicine at Mount Sinai; Barbara K Lipska, Human Brain Collection Core, National Institutes of Health, Bethesda, MD; David A Lewis, University of Pittsburgh; Vahram Haroutunian, Icahn
School of Medicine at Mount Sinai and James J Peters VA Medical Center; Chang-Gyu Hahn, Uni ity of Pennsylvania; Al der W Charney, Mount Sinai; Stella Dracheva, Mount Sinai; Alexey Kozlenkov, Mount Sinai; Judson Belmont, Icahn School of Medicine at Mount
Sinai; Diane DelValle, Icahn School of Medicine at Mount Sinai; Nancy Francoeur, Icahn School of Medicine at Mount Sinai; Evi Hadjimichael, Icahn School of Medicine at Mount Sinai; Dalila Pinto, Icahn School of Medicine at Mount Sinai; Harm van Bakel, Icahn School of
Medicine at Mount Sinai; Panos Roussos, Mount Sinai; John F Fullard, Mount Sinai; Jaroslav Bendl, Mount Sinai; Mads E Hauberg, Mount Sinai; Lara M Mangravite, Sage Bionetworks; Mette A Peters, Sage Bionetworks; Yooree Chae, Sage Bionetworks; Junmin Peng, St.
Jude Children's Hospital; Mingming Niu, St. Jude Children's Hospital; Xusheng Wang, St. Jude Children's Hospital; Maree J y ical Research Insti Thomas G Beach, Banner Sun Health Research Institute; Chao Chen, Central South University; Yi
Jiang, Central South University; Rujia Dai, Central South University; Annie W Shieh, SUNY Upstate Medical University; Chunyu Liu, SUNY Upstate Medical University; Kay S. Grennan, SUNY Upstate Medical University; Yan Xia, SUNY Upstate Medical University/Central
South Uni ity; Ramu am, SUNY Upstate Medical University; Yongjun Wang, Central South Uni ity; D Fitzg The University of Chicago; Lijun Cheng, The University of Chicago; Miguel Brown, The University of Chicago; Mimi Brown, The
University of Chicago; Tonya Brunetti, The University of Chicago; Thomas d The Uni y of Chi Ma]d Alsayed, The University of Chicago; Michael J Gandal, University of California, Los A les; Daniel H G ind, University of California, Los Angeles;
Hyejung Won, University of California, Los Angeles; Damon Polioudakis, University of California, Los Angeles; Brie Wamsley, University of California, Los Angeles; Jiani Yin, University of California, Los Angeles; Tarik Hadzic, University of California, Los Angeles; Luis De
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