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Nearly all protein-coding genes in eukaryotes undergo alternative splicing, which Normal Ta e
provides important means to expand transcriptome diversity. It is implied that splicing cancerl || 00 T2 sema
occurs co-transcriptionally and splicing is both spatially and temporally linked to DNA i
elements and epigenetic modifications.
Chromatin structures have been correlated with transcription dynamics, and thus, aaaaaaa ..
epigenetic regulation may play a significant role in alternative splicing. Recent studies e " s
have revealed splicing regulation is characterized by increased levels of nucleosome LT e
density and positioning, DNA methylation, and distinct histone modification patterns. =0T .. T
Cancer cells show very distinct exon-level expression profile compared to normal il T
cells and change In transcriptome can be attributed to epigenetic dysregulation egmma T e
(Figure 1). Yet, the extent, nature, and effects of epigenomic dysregulation in splicing g %@
remain unsolved.
Figure 1. Clustering of exon-level expression profile using t-SNE
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In this study, we aimed to learn complex regulatory vocabulary of splicing and identify
distinct epigenetic signatures that characterize splicing in cancer by systematically profiling
the epigenomic landscape of splicing using transcriptomic and epigenomic data from the
ENCODE and the Epigenome Roadmap projects.
J; = Alternative splicing is believed to be highly context-dependent and we found very
E —= —— complex histone signatures at both 3’ and 5’ splice sites. In general, H3K36me3 mark was
= —— = = == _ enriched at both splice sites, as previously reported, but this mark was not always required
* é -~ = — to splice an exon. For cassette exons spliced and expressed, tumor and normal samples
== === = = - showed different levels of histone enrichments (Figure 2).
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To explore the epigenomic contribution to the regulation of alternative splicing, we built
a machine learning classifier to predict alternate usages of cassette exons using DNA
Figure 2. Chromatin signatures at 3’ acceptor splice sites SequenCeS and epigenOmiC SignaIS adjacent tO SpllCe SlteS (Flgure 3)

for cassette exons expressed in both tumor and normal samples
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We applied a deep recurrent neural network (RNN)
model to solve this problem, which has proven
successful in various sequential information processing

and predictions such as natural language processing and

translation. The rationale for applying RNN to our model ————— [ e——

is that (1) RNN is optimized for processing sequential [smiereae 1) [omeweom )

information such as genomic sequences (2) RNN has a N S T S

time direction resembling how RNA is always transcribed | LSTHN GAU (Merged 1) :

by RNA polymerase in the 5’ to 3’ direction (3) temporal 3 <

memory cells of RNN allow the model to learn about | Dropont | A

complex context-dependent relationships among M )

features, and (4) RNN is very flexible with the types of | SO’TX | | e AUC = 0.88)

input and output data and therefore can easily integrate | —— Random Forest (AUC=085)

heterogeneous types of sequential data. " llee Positive Rate
Figure 3. Schematic of splicing prediction model Figure 4. Performance comparison

of machine learning algorithms

Compared to conventional machine learning
classifiers such as Random Forest and KNN, the RNN
model consistently outperformed in terms of classification
accuracy (Figure 4). On average, the prediction accuracy
was 84.72% for the LSTM-based model (87.57% for the
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Figure 5. Splicing prediction model performance
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