Transcriptome
Mining:

Population-scale genomic analysis
to better understand mental disease
& the subtle privacy risks
of this activity

Mark Gerstein, Yale

Slides freely downloadable from
Lectures.GersteinLab.org
& “tweetable” (via @markgerstein).

See last slide for more info.



TranscrlptOme = Gene Activity of All Genes in the Genome,
usually quantified by RNA-seq
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[ NATURE 459: 927; NAT. REV. GEN. 10: 57 ]
Expression of genes is quantified by transcription:
RNA-Seq measures mRNA transcript amounts



Successive steps of
Data Reduction

Fastq sequence files
~5-10 GB

\ 4

Index-building + Alignment to reference genome

BAM files
~1-2-fold reduction

Conversion to signal track by overlappingreads «—= — = = = = = =

BigWig files
~25-fold reduction

Mapping
to genes

A 4

Gene/Transcript
expression matrix
~20-fold reduction

RNA-Seq Overview

ATACAAGCAAGTATAAGTTCGTATGCCGTCTT
GGAGGCTGGAGTTGGGGACGTATGCGGCATAG
TACCGATCGAGTCGACTGTAAACGTAGGCATA
ATTCTGACTGGTGTCATGCTGATGTACTTAAA
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Quantitative information from RNA-seq signal:
average signals at exon level (RPKMs)

[NAT. REV. 10: 57; PLOS CB 4:e1000158; PNAS 4:107: 5254 ]

Reads => Signal
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* RNA Seq. gives rise to activity patterns
of genes & regions in the genome
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Some Core Science Qs Addressed by RNA-seq

« Gene activity as a function of:

- Developmental stage: basic patterns of co-active genes across
development

- Cell-type & Tissue: relationship to specialized functions

- Evolutionary relationships: behavior preserved across a wide
range of organisms; patterns in model organisms in relation to
those in humans

- Individual, across the human population
- Disease phenotypes: disruption of patterns in disease

« Some overarching Qs:
Are there core patterns of gene activity ?
How do they vary across individual ?
Are they disrupted by disease?



Studying large-scale transcriptome data
also produces

Data Exhaust

Metadata

Front End Back end
Core scientific Data collection and Data Exhaust
purposes analysis

Data on
Collaboration,

publication and
Infrastructure

« Data Exhaust = Exploitable byproducts of big data
collection and analysis

 Creative use of Data is key to Data Science !

[PHOTO: RELAXNEWS; from http://www.lapresse.ca]
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Transcriptome Mining: Population-scale genomic analysis to better
understand mental disease & the subtle privacy risks of this activity

- [Core] PsychENCODE:
Population-level analysis of
functional genomics data related
to mental disease

Consortium intro & construction
of an adult brain resource w/
1866 individuals

Explanation of across-population
variation via changing
proportions of cell types (using
single-cell deconvolution)

Generation of a large QTL
resource (~2.5M eQTLs)

Regulatory network construction
using QTLs, Hi-C & activity
relationships. Using this to link
GWAS SNPs to genes.

Embedding the reg. network in a
deep-learning model (DSPN) to
predict psychiatric disease
phenotype from genotype &
transcriptome

- [Exhaust] Genomic Privacy & RNA-seq

Introduction to Genomic Privacy

» The dilemma: The genome as fundamental,
inherited info that’s very private v. need for
large-scale mining for med. research

» 2-sided nature of RNA-seq presents
particularly tricky privacy issues

Using file formats to remove obvious variants

eQTLs: Quantifying & removing further variant
info from expression levels w/ ICl &
predictability. Instantiating a practical linking
attack w/ noisy quasi-identifiers

Signal Profiles: Manifest appreciable leakage
from large & small deletions. Linking attacks
possible but additional complication of SV
discovery in addition to genotyping

- [Exhaust] Publication Patterns
from data producing consortia

Co-authorship network stats relate to publication
rollouts & show gradual adoption by community

Key role of brokers in data dissemination
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Sample Sources: >2,500 brains

Cross-disorder: ASD, SCZ, BP,
Neurodevelopmental, Neurotypical
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Genome:
WGS, genotype

Epigenome:
ChlIP-seq, ATAC-
seq, HiC, ERRBS,

;% %/ Array Methylation,

NOMeSeq

Transcriptome:
RNA-seq,
IncRNAseq,

Proteome:
MWP, LC-MS/MS

Data Coordination/Analysis Center - Uniformly processed data across disorders and

developmental time periods!

The PsychENCODE consortium

National Institute
of Mental Health
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Some of the Qs addressed by PsychENCODE

Many psychiatric conditions are highly heritable
— Schizophrenia: up to 80%

But we don’t understand basic molecular mechanisms underpinning this

association . .
(in contrast to many other diseases such as cancer & heart disease)

Moreover, current models substantially underestimate heritability using genetic
data
— Schizophrenia : ~25%

Thus, interested in developing predictive models of psychiatric traits which:
- Use observations at intermediate (molecular levels) levels to inform latent structure

— Use the predictive features of these “molecular endo phenotypes” to begin to suggest
actors involved in mechanism

10 =



Collecting functional genomic datasets
for the adult human brain from PsychENCODE,
other large consortia & single cell studies
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De-convolving bulk gene expression variation
in brain PFC across a population

Non-negative Matrix Factorization (NMF)
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Neuronal & glial cell fraction change
across gender & disorders
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Cell fractions

NB - Excitatory to Inhibitory imbalance at neuronal subtype level for ASD

Rubenstein et al., Model of autism: increased ratio of excitation/inhibition in key neural systems, Genes Brain Behav. 2003
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Brain eQTL sets larger than previous studies

« Brain eQTLs (FDR< 0.05)

— 32944(75%) eGenes
— 2,542,908 eQTLs
— 1,341,182 unique cis-eSNPs

(~238K independent SNPs after linkage-disequilibrium (LD) pruning)
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« Large overlap with GTEx brain eQTLs

GTEXx Overlap
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Intersections

Numbers
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Linking GWAS non-coding SNPs to new disease
genes using gene regulatory network

142 GWAS SNPs, 22
genes for schizophrenia
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* A. F. Pardinas et al., Common schizophrenia alleles are enriched in mutation-intolerant
genes and in regions under strong background selection. Nat Genet 50, 381-389 (2018)
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Integrative modeling of brain phenotype data

* We use the framework of Boltzmann machines to
iIntegrate phenotypes at multiple levels, while
conditioning on genotype

 Evaluate joint Energy model of conditional
distribution

* Inference and training
— Prediction by minimizing free energy
- ‘Persistent’ MCMC for training

 Boltzmann machine variables

. visible units
p(x,h|z) = exp(—E(x,h|z))/Z (z)
_ h: hidden units xp( )
- z: conditioning units 2@ =), exp(~E(xhln)
- W: weights

E(:,h|z) = —zTWyx —xT Wyx — xTW3h — hTW,h — Bias
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Deep Structured Phenotype Network (DSPN)

Boltzmann machine variables

Traits
(2

X

.GersteinLab.org
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Deep Structured Phenotype Network (DSPN)

Traits
(2

Gene network
structure
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21 ™ Lectures



DSPN improves brain disease prediction

Accuracy = chance to correctly predict disease/health

Method SCZ BPD ASD AVG (SCZ+BPD+ASD)
LR-gene 54.6% ( 0.5%) |56.7% ( 2.5%) |50.0% ( 0.0%) . “@® @ 53.8% ( 1.0%)
¢
LR-trans 63.0% ( 4.8%) [63.3% ( 6.3%) |51.7% ( 1.8%) |5 . Z& 59.3% ( 4.3%)
2l ]
cRBM 70.0% (31.0%) |71.1% (22.6%) |56.7% ( 3.8%) - " o_§ 65.9% (19.1%)
> ig
DSPN-imput [59.0% ( 1.8%) [67.2% (10.7%) |62.5% ( 2.6%) .ﬁf'@? 62.9% ( 5.0%)
x|x @0
¥
DSPN-full 73.6% (32.8%) |76.7% (37.4%) |68.3% (14.4%) ‘ ;’ ® 72.9% (28.2%)
Model complexity increasing increasing constant increasing
Predictors genotype transcriptome genotype->transcriptome | genotype->transcriptome

Unbracketed figures show test-set performance accuracy, with chance at 50%; bracketed figures show variance
explained on liability scale

* Brainstorm consortium (~1.2 million individuals, Science, 2018) used linear predictive model
to find that common SNPs explain 25.6%, 20.5%, and 19% of the genetic variance for SCZ, BPD

and ASD
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DSPN discovers molecular pathways
from genotype to phenotype

Ranking score

Functional categories
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Transcriptome Mining: Population-scale genomic analysis to better
understand mental disease & the subtle privacy risks of this activity

- [Core] PsychENCODE:
Population-level analysis of
functional genomics data related
to mental disease

Consortium intro & construction
of an adult brain resource w/
1866 individuals

Explanation of across-population
variation via changing
proportions of cell types (using
single-cell deconvolution)

Generation of a large QTL
resource (~2.5M eQTLs)

Regulatory network construction
using QTLs, Hi-C & activity
relationships. Using this to link
GWAS SNPs to genes.

Embedding the reg. network in a
deep-learning model (DSPN) to
predict psychiatric disease
phenotype from genotype &
transcriptome

- [Exhaust) Genomic Privacy & RNA-seq

Introduction to Genomic Privacy

» The dilemma: The genome as fundamental,
inherited info that’s very private v. need for
large-scale mining for med. research

« 2-sided nature of RNA-seq presents
particularly tricky privacy issues

Using file formats to remove obvious variants

eQTLs: Quantifying & removing further variant
info from expression levels w/ ICl &
predictability. Instantiating a practical linking
attack w/ noisy quasi-identifiers

Signal Profiles: Manifest appreciable leakage
from large & small deletions. Linking attacks
possible but additional complication of SV
discovery in addition to genotyping

- [Exhaust] Publication Patterns
from data producing consortia

Co-authorship network stats relate to publication
rollouts & show gradual adoption by community

Key role of brokers in data dissemination



2-sided nature of functional
genomics data: Analysis can be
very General/Public
or Individual/Private

« General quantifications related to overall aspects
of a condition — ie gene activity as a function of:

- Developmental stage, Evolutionary relationships, Cell-type, Disease

 Above are not tied to an individual’s genotype. However, data is
derived from individuals & tagged with their genotypes

* (Note, a few calculations aim to use explicitly genotype to derive general
relations related to sequence variation & gene expression - eg allelic activity)
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Genomics has similar u @ flickr
"Big Data" Dilemma in
the Rest of Society a 5. B
il tou G
» Sharing & "peer- ! "s0@ | .
production” is central to % m

success of many new
ventures, with the same

risks as in genomics

- EG web search: Large-
scale mining essential

* We confront privacy
risks every day we
access the internet
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Tricky Privacy Considerations in Personal Genomics

* Genetic .
Exceptionalism :
The Genome is very
fundamental data,
potentially very
revealing about one’s
identity & .
characteristics
* Personal Genomic
info. essentially
meaningless
currently but will it
be in 20 yrs? 50 yrs?
- Genomic sequence
very revealing about
one’s children. Is true
consent possible?

— Once put on the web
it can’t be taken back

Culture Clash:

Genomics historically has been a
proponent of “open data” but not clear
personal genomics fits this.

— Clinical Medline has a very different
culture.

Ethically challenged history of genetics

- Ownership of the data & what consent
means (Hela)

» Could your genetic data give rise to a
product line?

[D Greenbaum & M Gerstein ('08). Am J. Bioethics; D Greenbaum & M Gerstein, Hartford Courant, 10 Jul. '08 ; SF Chronicle, 2 Nov. '08;
Greenbaum et al. PLOS CB (‘11) ; Greenbaum & Gerstein ('13), The Scientist; Photo from NY Times]
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The Other Side of the Coin:
Why we should share

« Sharing helps speed research

- Large-scale mining of this information is
important for medical research

- Privacy is cumbersome, particularly for big
data

« Sharing is important for reproducible research
« Sharing is useful for education

— More fun to study a known person’s genome
« Eg Zimmer's Game of Genomes in STAT

CARLZIMMER'S

GAMEOF GENOMES

SEASON |

Robert Munsch

We Share

EVERYTHING!

ilustrated by Michael Martchenko

[Yale Law Roundtable (‘10). Comp. in Sci. &
Eng. 12:8; D Greenbaum & M Gerstein (‘09).
Am. J. Bioethics; D Greenbaum & M Gerstein
(‘“10). SF Chronicle, May 2, Page E-4;
Greenbaum et al. PLOS CB (“11)]




The Dilemma

Dawd Parkins

[Economist, 15 Aug ‘15]

« The individual (harmed?) v the collective (benefits)
— But do sick patients care about their privacy?
* How to balance risks v rewards - Quantification

- What is acceptable risk?
Can we quantify leakage?
« EXx: photos of eye color

— Cost Benefit Analysis
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Current Social & Technical Solutions

* Closed Data Approach * Open Data
- Consents - Genomic "test pilots”
- “Protected” distribution via dbGAP (ala PGP)?
- Local computes on secure computer ) fglg'gﬁtfgzgs &

e |ssues with Closed Data

— Non-uniformity of consents & paperwork

 Different international norms, leading to
confusion

- Encryption & computer security creates
burdensome requirements on data
sharing & large scale analysis

- Many schemes get “hacked”

[Greenbuam et al ('04), Nat. Biotech; Greenbaum & Gerstein ('13), The Scientist]

- Some public data &
data donation is
helpful but is this a
realistic solution for
an unbiased sample
of ~1M

30 =



Strawman Hybrid Social & Tech Proposed Solution?

 Fundamentally, researchers < Quantifying Leakage &
have to keep genetic secrets.  allowing a small amounts of it

- Need for an (international) « Careful separation & coupling

legal framework of private & public data

- Genetic Licensure & training - Lightweight, freely accessible
for individuals secondary datasets coupled
(similar to medical license, to underlying variants
drivers license) _ - Selection of stub & "test pilot"

« Technology to make things datasets for benchmarking
easier — Develop programs on public

— Cloud computing & enclaves stubs on your laptop, then move
(eg solution of Genomics the program to the cloud for
England) private production run

» Technological barriers
shouldn't create a social
incentive for “hacking”

[D Greenbaum, M Gerstein (‘11). Am J Bioeth 11:39. Greenbaum & Gerstein, The Scientist ('13)]
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Functional genomics data comes with a great deal of sequencing;
We can quantify amount of leakage at every step of the data
summarization process.

—t
[
[ .
[ ]
[ —— |
[ —— |
- ——— - |
[
[
[
[
[+ |
[T
[T
overlap
profile l
©
c
=
n

‘_

genes

samples

[Gursoy et al, Bioarvix]

increasing gene expression level

TADs

loop calling
peak calling

Hi-C interaction matrix
depth signal profiles

mapped functional
genomics reads
BAM/SAM files

modified reads

NA12878 as case
study - 1000
genomes variants
are used as gold

-

ChIP-Seq

RNA-Seq

ATAC-Seq
Hi-C

standard

A

raw reads - Fastq files

Leakage Leaking |# of potential |Average leakage |Maximum leakage | # of accessible [Total leakage
Source Variants variants |per variant (bits) | per variant (bits) variants (bits)
Exonic
[ Raw reads variants 2,682,417 0.10 £0.28 9.88 £2.12 246,893 24,689
Modified reads Exonic
Q = {indels} SNVs 2,607,969 0.09 = 0.27 9.95 x 2,02 231,031 207,92
odified reads Exonic
Q = {mismatches}| indels 51,408 0.33 £ 0.47 7.64 £2.42 15,862 5234
si I il Exonic
ignal profiles | - tions 48,019 0.29 £ 0.45 7.97 £2.42 1,067 208

{
(

)
)
)
)
)
)
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*  How much information, for example, do RNA-
Seq reads (or ChiP-Seq) reads contain? Does
that information enough to identify

individuals?
S— .
. _3\([) gsstandard e T
2 E | —HiC repl —e—H3K27ac —6—CTCF Lab1
28 Hi-C rep2 w | —0-H3K27me3 _ —6-CTCF Lab2
EA Hi-C rep3 % | -e-H3K36me3 S | ——CTCF Lab3
m SNP-chip £ | ——H3Kdme1 1 »| —-PBX3
o ( —0-H3K4me2 T S( -e—RNAPII Lab1
§ ) --H3K9ac £ 2| ——RNAPIILab2
—_WES % | —Hak2ome1 £ | —-JUND
g | ——Total RNA-Seq < | ~+-Hearz ~o~RELB
x4 —FPolyARNA-Seq H3K79me2 HDGF
U Single Cell RNA-Seq cell1 H3K9me3
9 Single Cell RNA-Seq cell2
a) 10 — b)
106 /
-
w10°; ,
w " /
E ]
£10
[0
=
©
<10°%;
102 . . . .
10 10" 1 100 10"
C) d Total coverage (bp)
107 ] 3 14 |
g
o2t
10°%¢ IR
o 'l
—_ e}
(O] .
n10° 7 Qost
Y Gy
e Do
= ]
2 E
©
<1 03 3 Qoaf
S
c
0 NN~ ONN QM - T o o e
107 ' LT T I P P P B g
109 TIETITGOROZIITIETIS0NTEE g8 ss272
s EP22r T 5 2H 3P zZzZzZ
Total coverage (bp) - T T ss 5o
£

[Gursoy et al, Bioarvix]

. It might seem like we don’t infer much
information from single ChIP-Seq and RNA-
Seq experiments compared to WGS

45
4
35
L 3
=
Pos
o
L 2
5
215

'y

o
4

However putting 10 different
ChiIP-Seq experiments and
RNA-Seq together with
imputation provides a great
deal of information about the
individual

I SN

SNV-+imputation

WGS All ChIP-Seg+RNA-Seq
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Light-weight formats to Hide Most
of the Read Data (Signal Tracks)

« Some lightweight format clearly separate public &
private info., aiding exchange

* Files become much smaller

« Distinction between formats to compute on and those
to archive with — become sharper with big data

Anonymization
(Optional)

[Bioinformatics 27: 281]

Public
AlignmentBlocks ID
elnredl g1p2 2000l 8 250 e il UW L B T
chr5:=:561:510:1:50 2 =f-====-
LhLj LTI TTIEIR N g5 B SRR

[h//

Mapping coordinates
without variants (MRF)

----- »1 GTCGTGTCTGTATCCA...
_____ =2 ATGGCTCGTTGGGATT. ..
..... AN C T GG TEC LT G TACE

Private

ID Sequences

B—

Reads

(linked via ID,
10X larger than
mapping coord.)
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Privacy-aware Binary Alignment Mapping (pBAM)

‘ =
D (8am Vi L
( ) > ¢ y E -
real =
c 4\
2/ . R
w >
g VN
= Ny j £
g N 4
a
D (8BAM Po. D*(pBAM S ol B £
#),pnva(y‘presemng L‘ i _L» 5 genomic position i
transformation) reported ?
L..LA.__...LL .JLA‘,.L.._‘
genomic position i
D - D*
(.diff)

e A manipulation on Binary Alignment Files (BAM)
e Suppression: replace sequence and quality string with (*)
e Generalization: convert cigar, alignment score and MD tag into perfectly matched

strings

e Works with majority of functions of SAMtools.

[Gursoy et al, Bioarvix]
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pPBAMs are high in utility and can be converted BAM

BAM read:
pBAM read:

mapped to reference
genome

insertion

reference genome: ...ATCGTGTAA

AALGTGC----

‘M deletion

-
]
o
E 4x10°
] o0
: xeso\\)\\o 2x10°
--|A GGCTAAAC.... M
IAGKIGGG
AGTGGG
added noise @*N o
to the depth "’e,o,
signal l”/'o,, 200

e Works well with many functional
genomics pipelines, including STAR
signal tracks, RSEM gene expression
and quantification and MACS2 for

ChIP-Seq peak calling.

e The original BAM does not need be
stored. Rather, a smaller file called .diff
can be safely stored for sensitive
information in the BAM file.

[Gursoy et al, Bioarvix]

r= all reads with indels

CRAM

Q = {removal of variants}) Q = {removal of mismatches} Q = {removal of small indels) Q = {removal of large indels}
r= al reads with mismatch r= all reads with mismatch
25x10°

r= all splitreads

1

Frequency

S S

reference

genome
/ .

1
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Transcriptome Mining: Population-scale genomic analysis to better
understand mental disease & the subtle privacy risks of this activity

- [Core] PsychENCODE:
Population-level analysis of
functional genomics data related
to mental disease

Consortium intro & construction
of an adult brain resource w/
1866 individuals

Explanation of across-population
variation via changing
proportions of cell types (using
single-cell deconvolution)

Generation of a large QTL
resource (~2.5M eQTLs)

Regulatory network construction
using QTLs, Hi-C & activity
relationships. Using this to link
GWAS SNPs to genes.

Embedding the reg. network in a
deep-learning model (DSPN) to
predict psychiatric disease
phenotype from genotype &
transcriptome

- [Exhaust) Genomic Privacy & RNA-seq

Introduction to Genomic Privacy

» The dilemma: The genome as fundamental,
inherited info that’s very private v. need for
large-scale mining for med. research

« 2-sided nature of RNA-seq presents
particularly tricky privacy issues

Using file formats to remove obvious variants

eQTLs: Quantifying & removing further variant
info from expression levels w/ ICl &
predictability. Instantiating a practical linking
attack w/ noisy quasi-identifiers

Signal Profiles: Manifest appreciable leakage
from large & small deletions. Linking attacks
possible but additional complication of SV
discovery in addition to genotyping

- [Exhaust] Publication Patterns
from data producing consortia

Co-authorship network stats relate to publication
rollouts & show gradual adoption by community

Key role of brokers in data dissemination



Representative Functional Genomics, Genotype,
eQTL Datasets

« Genotypes are available from the 1000 Genomes
Project

 MRNA sequencing for 462 individuals from geUVADIS
and ENCODE

- Publicly available quantification for protein coding
genes

* Functional genomics data (ChIP-Seq, RNA-Seq, Hi-C)
available from ENCODE

» Approximately 3,000 cis-eQTL (FDR<0.05)

acpw XY TR AN,
1000 G = 5 A
s W ofy ﬁ S . 7 I,
A Deep Catalog of Human Genetic Variation /V'lf ¥ ' /7 ";‘ S VAD ' S : / !
-‘7,')‘ o~ o * - Ib
N




(a) C A
Individual

)

(ii)

(iii)

[Biometrics 68(1) 1-11]

Frequency

EE eX0N | SNP

mmm— non-trascriped regions,

e.g., intron etc.

(b)

(c)

15

10

eQTL Mapping
Using RNA-Seq
Data

* eQTLs are genomic loci
that contribute to
variation in mRNA
expression levels

* eQTLs provide insights
on transcription
regulation, and the
molecular basis of
phenotypic outcomes

« eQTL mapping can be
done with RNA-Seq data
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Information Content and Predictability
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g1=2 g2=1 gn =1 (no LD, distant correlations,
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Average Genotype Predictability

o
SN

Cumulative Average per Individual

IC| Leakage (Bits)

20
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Best 5 eQTLs
Best 4 eQTLs

Shuffled
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o, 5
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Linking Attack Scenario

Phenotype dataset
(Public)

Genotype dataset
(Stolen/Hacked/Queried)

Phenotype-Genotype

" &’1' '6(\‘
correlation dataset & @& .
Phenotype 1 «—»Variant 1 1
Phenotype 2 «—Variant 2
0

Phenotype g¢—®Variant g

[Harmanciet al. Nat. Meth. (in revision)]

Predicted/Matched genotypes
HIV A "
I Status oo (\é\‘ £
I Predicted variant A NS o
1
HIV | Jenogres & HIV+ 0/0 1/1 11
Statusl o o &
RO 0, HIV-" 22 111 0/0
g HIV+| 1 | 0 2 Genotype comparison 1/0| 1/0 0/2
HIV- 2 | 2 1 and matching 272 | 0/0 ™
: 0/1 1/1 21
PID-n  HIV- o 1 1
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Linking Attacks: Case of Netflix Prize

Names available for many users!

m Movie (ID) Date of Grade Grade [1,2,3,4,5] m Movie (ID) Date of Grade Grade [0-10]

NETELIN

NTFLX-0 NTFLX-19 10/12/2008 IMDB-0 IMDB-173 4/20/2009 5
NTFLX-1 NTFLX-116 4/23/2009 3 IMDB-1 IMDB-18 10/18/2008 0
NTFLX-2 NTFLX-92 5/27/2010 2 IMDB-2 IMDB-341 5/27/2010 _
NTFLX-1 NTFLX-666 6/6/2016 5

* Many users are shared
» The grades of same users are correlated
A user grades one movie around the same date in two databases

Anonymized Netflix Prize Training Dataset
made available to contestants
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Linking Attacks: Case of Netflix Prize

Names available for many users!

m Movie (ID) Date of Grade Grade [1,2,3,4,5] m Movie (ID) Date of Grade Grade [0-10]

NTFLX-2 NTFLX-92 5/27/2010 IMDB-2 IMDB-341 5/27/2010 i

NTFLX-1 NTFLX-666 6/6/2016 5

* Many users are shared
* The grades of same users are correlated
* A user grades one movie around the same date in two databases

+ IMDB users are public

* NetFLIX and IMdB moves are public
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Linking Attacks: Case of Netflix Prize

Names available for many users!

m Movie (ID) Date of Grade Grade [1,2,3,4,5] Movie (ID) Date of Grade Grade [0-10]

NTFLX-2 NTFLX-92 5/27/2010

IMDB-2 IMDB-341 5/27/2010 =

* Many users are shared
» The grades of same users are correlated
A user grades one movie around the same date in two databases
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Linking Attack Scenario

Phenotype dataset
(Public)

Genotype dataset
(Stolen/Hacked/Queried)

Phenotype-Genotype

" &’1' '6(\‘
correlation dataset & @& .
Phenotype 1 «—»Variant 1 1
Phenotype 2 «—Variant 2
0

Phenotype g¢—®Variant g

[Harmanciet al. Nat. Meth. (in revision)]

Predicted/Matched genotypes
HIV A "
I Status oo (\é\‘ £
I Predicted variant A NS o
1
HIV | Jenogres & HIV+ 0/0 1/1 11
Statusl o o &
RO 0, HIV-" 22 111 0/0
g HIV+| 1 | 0 2 Genotype comparison 1/0| 1/0 0/2
HIV- 2 | 2 1 and matching 272 | 0/0 ™
: 0/1 1/1 21
PID-n  HIV- o 1 1

46 - Lectures.GersteinLab.org



Levels of Expression-Genotype Model
Simplifications for Genotype Prediction

A' P(Ex, Vi)

.
I A :
/h’ [
- | ‘ |
O 1 2 Extremity based Simplified extremity based
High joint distnbution joint distribution
HEE R , - :""A """""" 'y
I I ‘ | ! Positive
8 - W ; [
0 | La” ! I I (Genotype: 2)
g re -.'F‘ bt ittt ot | X ———————— i S A—" - T R A S : e
Q e : : ‘5 : : I Negative
|ﬁ ! ! 1€ - = ! 1 : extremity.
| : : : : : : I (Genotype: 0)
LO\V ————— H —<ﬁ
Frequency 0o 1 2 0 1 2 0 1 2
Genotype Genotype Genotype
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Success in Linking Attack
with Extremity based Genotype Prediction

200 individuals eQTL Discovery
High 200 individuals in Linking Attack

Sensitivity
1.0r

Genotypes Only

Genotypes + Gender

Genotypes + Population
Genotypes + Gender + Population

© o o
RS (0] (0]
T T T

o
(M)

Fraction of Vulnerable Individuals

0.0 : ‘ : ‘
Low 0 1 4

0 20 30 0
Sensitivity l Association Strength Threshold I
High Number Low Number
Of eQTLs Of eQTLs
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Fraction of Vulnerable Individuals

o g o o -
N > o (o) o
T T T T 1

o
o
o

Success in Linking Attack
with Extremity based Genotype Prediction

200 individuals eQTL Discovery
100,200 individuals in Linking Attack

200 individuals eQTL Discovery
200 individuals in Linking Attack

1.0¢
Genotypes Only
Genotypes + Gender w
\ Genotypes + Population g
\ Genotypes + Gender + Population © 0.8

\l >
2
L=

[0} i

S 0.6

o
Q
£

S 0.4+
N
(o]
c
.0

© 0.2+
o
L

4 . : 0.0 !
10 20 30 4 0 10 20 30

Association Strength Threshold Association Strength Threshold

=
o
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Transcriptome Mining: Population-scale genomic analysis to better
understand mental disease & the subtle privacy risks of this activity

- [Core] PsychENCODE:
Population-level analysis of
functional genomics data related
to mental disease

Consortium intro & construction
of an adult brain resource w/
1866 individuals

Explanation of across-population
variation via changing
proportions of cell types (using
single-cell deconvolution)

Generation of a large QTL
resource (~2.5M eQTLs)

Regulatory network construction
using QTLs, Hi-C & activity
relationships. Using this to link
GWAS SNPs to genes.

Embedding the reg. network in a
deep-learning model (DSPN) to
predict psychiatric disease
phenotype from genotype &
transcriptome

- [Exhaust) Genomic Privacy & RNA-seq

Introduction to Genomic Privacy

» The dilemma: The genome as fundamental,
inherited info that’s very private v. need for
large-scale mining for med. research

« 2-sided nature of RNA-seq presents
particularly tricky privacy issues

Using file formats to remove obvious variants

eQTLs: Quantifying & removing further variant
info from expression levels w/ ICl &
predictability. Instantiating a practical linking
attack w/ noisy quasi-identifiers

Signal Profiles: Manifest appreciable leakage
from large & small deletions. Linking attacks
possible but additional complication of SV
discovery in addition to genotyping

- [Exhaust] Publication Patterns
from data producing consortia

Co-authorship network stats relate to publication
rollouts & show gradual adoption by community

Key role of brokers in data dissemination



RNA-Seq
Signal

Detection & Genotyping of small & large
SV deletions from signal profiles

] Coordinate ChIP-Seq
Signals

ﬂ . Genom|c
/7
-
/ \
/7 N
7 \
/7
/7

\
\
——

ACGTATC Genomic

Coordinate

Large Deletion

Small Deletion

RNA-seq also shows large deletions
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Scale
chri:
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Repeatm asker

wholBlood F ><V7Q
0 16544
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U 01045
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0 1 2616
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[Harmanci

Example of Small Deletion Evident in Signal Profile

500 hases} { hg19
| 17,393,400 | 17,393,500 17,393,600 | 17,383,700 | 7393 u ol 17,393, guul 1?,394,000\ 17,394,100 17,394,200 |
Simple Nucleotide Pol\émor hisms (db SNP 150) Found in == 1% of § am les
Pt rs2746533 |
151835351 7 rs350581011
rs340436251

UCSC Genes (RefSeq, GenBank CCDS. Rfam, tRNAs & Comparative Genomics;

Repeatj
GTEx RNA signal from female YWhole Blood (GTEX-KW7Q-0005-5M- 4BRWI)

w

GTEx RNA signal from female YWhole Blood (GTEX-13FTX-0005-5M-5NYF B)

| L et et

GTEx RNA signal from female Whole Bload (GTEX-13VXT-0005-SM-5NIF 3)

RO e ——— e NEEE

GTEx RNA signal from female YWhole Blood (GTEX-14BM I-0006-SM-6MR3T)

GTEx RNA signal from female Whole Blood (GTEi-i i YD B-0006-SM-5LZXE)

GTEx RNA signal from fermnale YWhole Blood (GTEX, -5LU8S)

ments hy RepeatMasker

58 CACA 67A3%3.168 IA CATGA 703

P 150) Found in »= 1% of Samples

'XRCTCTA&73$ESQCCAGA&T3%3£98ACCCTCAAA

2\73%\3&1RAAAAA2\?3%3£2£A0AAAz\ya%aéagl‘l'AAA0(1:73%\354R|TTAAC(1:73%\3

Simple Nucleotide Polvrrggrmggbss

UCSC Genes‘RefSeH GenBank CC!

Repeating Elemd
GTEx RNA signal from female YWho

AAAAAA

rs719262
51995339170
am, tRNAS & Comparative Genomics)

ints iy Repeath asker

e Bidod (GTEX-KV7Q-0005-SM- 4BRWI)

GTEx RNA signal from fermale Who ﬂ pd (GTEX-13FTX-0005-5M-6NIFE)

GTEx RNA signal from female ¥YWho ﬁ pd (GTEX-13VXT-0005-SM-6NIF 3)
e

GTEx RNA signal from fernale Whal W d (GTEX-14BM U-0006-SM-SMR3T)

3 RNA signal from Temale Whioje Blgod #-13Y U0b-5h -5LEKE;

GTEx RNA signal from female Who ﬂl (GTEX-120SJ-0005-5M-5LU8S)
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Example of Large Deletion Evident in Signal Profile

- 94 kb >
| 248,730 kb 248,750 kb 248,770 kb 248,790 kb 248,810 kb |
[ |
H3K27ac . . #ud  ods i, L. .
H3K36me3 ik .o o libdtnd .. 1 1 AT THAPIY ET T BT
H3K4me! | oualbillh i bdhd ooier o o o anlih by L i,
H3K4me2 Ll jl_llhll [ Y - 1] ' 1
H3K4me3 | . M. ousuid. . L len

H3K79me2 g, ibke llnll b bbitiion sl i 2 o1
H3K9ac T Y

HIKIME3  \igan sittal s bt L bl
Pooled gl sl ittt vk (1 ia sl

Large Deletion
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Information Leakage from SV Deletions

a)Before Anonymization b) After Anonymization
} * Real = Random! ’ x Real = Random\
1 W 2220 300 X ‘

)

’ : TCI Leakgge (bits;3 10 12 0 2 4 6 8 10 12
ICI Leakage (bits)

Simple anonymization procedure (filling in deletion by value at endpoints) has dramatic effect

54 = Lectures.GersteinLab.org



Another type of Linking Attack:
Linking based on SV Genotyping

. ) Structural Variants Panel
SV Panel for Signal Profiles () (Stolen/Legally Obtained) (pg)
SV-1  SV-2 SV-3 -.-SV-N_ [  SV-1 SVb SV-3 -+ SV-N. }

]
[ ! L - < Il
v rm

1

\
\
T 7 4 \ vl [ /
\ \ \ ’
\

. .
', / ! \ A

A ized eee -
;:r:)';'l':f; SV-1| SV-2| SV-3 SV-N |HIV Status Pﬁtient SV-1|SV-b| SV-3| eee | SV-N
ame
SIND-1 | O | O | 2 |- | 2 + :
Comparison of SV GIND-1| 0| 1] 2 0
SIND-2 | 2| 0| X | oo | O | mumm Panels and GIND-2 | 2| 0| 2| «s | 1
Genotype

GIND-3| 0 | 1 1)1 0

NN Matching

Sion | 0| X | X| | 0 | 5 GINDK| 1|2 | 2| | 2

Predicted SV (G) Structural Variants Genotype
Genotype Dataset _ Dataset
: i inG/ inG
Aqormesa | Patent | v sius | SonebmeinG [ Senstypen G| (1100 oy Optained) (0)

SIND-1 | GIND-2 + 0/0 | 1/0 |---| 0/24 SV-N

SIND-2 | GIND-7| ™= § Q/2 | 1/0 |---| 0/0 \

SINDmR| GIND-3 + 0/0 | 1/X e+ 00 Genotype of SV-Nin Genotype of SV-Nin
SV Genotype Predicted Genotype

Dataset (G) Dataset (G)
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Another type of Linking Attack:
First Doing SV Genotyping

Genomewide Signal Profile Dataset (Public) (S)

Anonymized
Sample ID

Genomewide Signal Profiles | HIV Status

SIND-1

SIND-2

e
(

SV
Discovery
(Optional)

SIND-n

SV
Genotyping

Genomic Coordinate

g
F 1
fﬁ S Discovered/Supplied ( )
: SV Panel for Signal Profiles Ps

A Y

1

1
1 1 y & i 4 1 LN
i or » TSV-1 8V-2  SV-3 - SVN

i

1

1

Supplied
SV Panel
(Optional)

Anonymized SV Genotypes
SamplelD | sv.1|sv2|sv-3| *** | SV-N

HIV Status

SIND-1 | O | O | 2| <= | 2 +
SIND-2 | 2| 0 X | eee 0 -

SIND-n | O | X | X | -] 0 +

Predicted SV Genotype Dataset (G )
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Accuracy of Linking

0.8}

0.6}

0.4+

0.2}

Linking Attack Based on SV Deletions in
gEUVADIS Dataset

c) Genotyping

(1kG MAF>0.01) d) Discovery + Genotyping
1 . . . .
0.8}
(=]
£
<
5 0.6}
S
g
s 04+
Q
Q
<
0.2}
0 20 40 60 80 100 % 20 40 60 80 100
Number of Variants used in the Attack Number of Variants used in the Attack
Sorted in Decreasing Sorted in Decreasing
Predictability Predictability
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Transcriptome Mining: Population-scale genomic analysis to better
understand mental disease & the subtle privacy risks of this activity

- [Core] PsychENCODE:
Population-level analysis of
functional genomics data related
to mental disease

Consortium intro & construction
of an adult brain resource w/
1866 individuals

Explanation of across-population
variation via changing
proportions of cell types (using
single-cell deconvolution)

Generation of a large QTL
resource (~2.5M eQTLs)

Regulatory network construction
using QTLs, Hi-C & activity
relationships. Using this to link
GWAS SNPs to genes.

Embedding the reg. network in a
deep-learning model (DSPN) to
predict psychiatric disease
phenotype from genotype &
transcriptome

- [Exhaust) Genomic Privacy & RNA-seq

Introduction to Genomic Privacy

» The dilemma: The genome as fundamental,
inherited info that’s very private v. need for
large-scale mining for med. research

« 2-sided nature of RNA-seq presents
particularly tricky privacy issues

Using file formats to remove obvious variants

eQTLs: Quantifying & removing further variant
info from expression levels w/ ICl &
predictability. Instantiating a practical linking
attack w/ noisy quasi-identifiers

Signal Profiles: Manifest appreciable leakage
from large & small deletions. Linking attacks
possible but additional complication of SV
discovery in addition to genotyping

- [Exhaust] Publication Patterns
from data producing consortia

Co-authorship network stats relate to publication
rollouts & show gradual adoption by community

Key role of brokers in data dissemination
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With help of M Pazin at NHGRI, identified: 702 community papers that used ENCODE
data but were not supported by ENCODE funding &

558 consortium papers supported by ENCODE funding
(https://www.encodeproject.org/search/?type=Publication for up-to-date query)

Then identified 1,786 ENCODE members & 8,263 non-members .

B non-ENCODE (papers used ENCODE data) B ENCODE
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Transcriptome Mining: Population-scale genomic analysis to better
understand mental disease & the subtle privacy risks of this activity

- [Core] PsychENCODE:
Population-level analysis of
functional genomics data related
to mental disease

Consortium intro & construction
of an adult brain resource w/
1866 individuals

Explanation of across-population
variation via changing
proportions of cell types (using
single-cell deconvolution)

Generation of a large QTL
resource (~2.5M eQTLs)

Regulatory network construction
using QTLs, Hi-C & activity
relationships. Using this to link
GWAS SNPs to genes.

Embedding the reg. network in a
deep-learning model (DSPN) to
predict psychiatric disease
phenotype from genotype &
transcriptome

- [Exhaust) Genomic Privacy & RNA-seq

Introduction to Genomic Privacy

» The dilemma: The genome as fundamental,
inherited info that’s very private v. need for
large-scale mining for med. research

« 2-sided nature of RNA-seq presents
particularly tricky privacy issues

Using file formats to remove obvious variants

eQTLs: Quantifying & removing further variant
info from expression levels w/ ICl &
predictability. Instantiating a practical linking
attack w/ noisy quasi-identifiers

Signal Profiles: Manifest appreciable leakage
from large & small deletions. Linking attacks
possible but additional complication of SV
discovery in addition to genotyping

- [Exhaust] Publication Patterns
from data producing consortia

Co-authorship network stats relate to publication
rollouts & show gradual adoption by community

Key role of brokers in data dissemination
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“Adult Capstone” Team — 1 of 3 capstones

PsychENCODE

Daifeng Wang, Shuang Liu, Jonathan Warrell, Hyejung Won, X
Acknowledgment ;=9 "and. Sauang =i yejung u

Shi, Fabio Navarro, Declan Clarke, Mengting Gu, Prashant Emani,

Yucheng T. Yang, Min Xu, Michael Gandal, Shaoke Lou, Jing Zhang, Jonathan J. Park,
Naticaal Insthiite Chengfei Yan, Suhn Kyong Rhie, Kasidet Manakongtreecheep, Holly Zhou, Aparna

Nathan, Mette Peters, Eugenio Mattei, Dominic Fitzgerald, Tonya Brunetti, Jill Moore,
of Mental Health  yap gjang, Kiran Girdhar, Gabriel Hoffman, Selim Kalayci, Zeynep Hulya Gumus

PsychENCODE Consortium,
*+  Geetha Senthil Panos Roussos, Schahram Akbarian, Andrew E. Jaffe,
* LoraBingaman Kevin White, Zhiping Weng, Nenad Sestan,
» David Panchision

- Alexander Arguello Daniel H. Geschwind, James A. Knowles
* Thomas Lehner

Dedicated to Pamela Sklar

The PsyChENCODE Consortium: atison E Ashley-Koch, Duke University; Gregory E Crawford, Duke University; Melanie E Garrett, Duke University; Lingyun Song, Duke University; Alexias Safi, Duke University;

Graham D Johnson, Duke University; Gregory A Wray, Duke University; Timothy E Reddy, Duke University; Fernando S Goes, Johns Hopkins University; Peter Zandi, Johns Hopkins University; Julien Bryois, Karolinska Institutet; Andrew E
Jaffe, Lieber Institute for Brain Development; Amanda J Price, Lieber Institute for Brain Development; Nikolay A Ivanov, Lieber Institute for Brain Development; Leonardo Collado-Torres, Lieber Institute for Brain Development; Thomas M
Hyde, Lieber Institute for Brain Development; Emily E Burke, Lieber Institute for Brain Development; Joel E Kleiman, Lieber Institute for Brain Development; Ran Tao, Lieber Institute for Brain Development; Joo Heon Shin, Lieber Institute for
Brain Development; Schahram Akbarian, Icahn School of Medicine at Mount Sinai; Kiran Girdhar, Icahn School of Medicine at Mount Sinai; Yan Jiang, Icahn School of Medicine at Mount Sinai; Marija Kundakovic, Icahn School of Medicine at
Mount Sinai; Leanne Brown, Icahn School of Medicine at Mount Sinai; Bibi S Kassim, Icahn School of Medicine at Mount Sinai; Royce B Park, Icahn School of Medicine at Mount Sinai; Jennifer R Wiseman, Icahn School of Medicine at Mount
Sinai; Elizabeth Zharovsky, Icahn School of Medicine at Mount Sinai; Rivka Jacobov, Icahn School of Medicine at Mount Sinai; Olivia Devillers, Icahn School of Medicine at Mount Sinai; Elie Flatow, Icahn School of Medicine at Mount Sinai;
Gabriel E Hoffman, Icahn School of Medicine at Mount Sinai; Barbara K Lipska, Human Brain Collection Core, National Institutes of Health, Bethesda, MD; David A Lewis, University of Pittsburgh; Vahram Haroutunian, Icahn School of Medicine
at Mount Sinai and James J Peters VA Medical Center; Chang-Gyu Hahn, University of Pennsylvania; Alexander W Charney, Mount Sinai; Stella Dracheva, Mount Sinai; Alexey Kozlenkov, Mount Sinai; Judson Belmont, Icahn School of
Medicine at Mount Sinai; Diane DelValle, Icahn School of Medicine at Mount Sinai; Nancy Francoeur, Icahn School of Medicine at Mount Sinai; Evi Hadjimichael, Icahn School of Medicine at Mount Sinai; Dalila Pinto, Icahn School of Medicine at
Mount Sinai; Harm van Bakel, Icahn School of Medicine at Mount Sinai; Panos Roussos, Mount Sinai; John F Fullard, Mount Sinai; Jaroslav Bendl, Mount Sinai; Mads E Hauberg, Mount Sinai; Lara M Mangravite, Sage Bionetworks; Mette A
Peters, Sage Bionetworks; Yooree Chae, Sage Bionetworks; Junmin Peng, St. Jude Children's Hospital; Mingming Niu, St. Jude Children's Hospital; Xusheng Wang, St. Jude Children's Hospital; Maree J Webster, Stanley Medical Research
Institute; Thomas G Beach, Banner Sun Health Research Institute; Chao Chen, Central South University; Yi Jiang, Central South University; Rujia Dai, Central South University; Annie W Shieh, SUNY Upstate Medical University; Chunyu Liu,
SUNY Upstate Medical University; Kay S. Grennan, SUNY Upstate Medical University; Yan Xia, SUNY Upstate Medical University/Central South University; Ramu Vadukapuram, SUNY Upstate Medical University; Yongjun Wang, Central South
University; Dominic Fitzgerald, The University of Chicago; Lijun Cheng, The University of Chicago; Miguel Brown, The University of Chicago; Mimi Brown, The University of Chicago; Tonya Brunetti, The University of Chicago; Thomas
Goodman, The University of Chicago; Majd Alsayed, The University of Chicago; Michael J Gandal, University of California, Los Angeles; Daniel H Geschwind, University of California, Los Angeles; Hyejung Won, University of California, Los
Angeles; Damon Polioudakis, University of California, Los Angeles; Brie Wamsley, University of California, Los Angeles; Jiani Yin, University of California, Los Angeles; Tarik Hadzic, University of California, Los Angeles; Luis De La Torre
Ubieta, UCLA; Vivek Swarup, University of California, Los Angeles; Stephan J Sanders, University of California, San Francisco; Matthew W State, University of California, San Francisco; Donna M Werling, University of California, San
Francisco; Joon-Yong An, University of California, San Francisco; Brooke Sheppard, University of California, San Francisco; A Jeremy Willsey, University of California, San Francisco; Kevin P White, The University of Chicago; Mohana Ray,
The University of Chicago; Gina Giase, SUNY Upstate Medical University; Amira Kefi, University of lllinois at Chicago; Eugenio Mattei, University of M husetts Medical School; Michael Purcaro, University of Massachusetts Medical
School; Zhiping Weng, University of Massachusetts Medical School; Jill Moore, University of Massachusetts Medical School; Henry Pratt, University of Massachusetts Medical School; Jack Huey, University of Massachusetts Medical School;
Tyler Borrman, University of Massachusetts Medical School; Patrick F Sullivan, University of North Carolina - Chapel Hill; Paola Giusti-Rodriguez, University of North Carolina - Chapel Hill; Yunjung Kim, University of North Carolina - Chapel
Hill; Patrick Sullivan, University of North Carolina - Chapel Hill; Jin Szatkiewicz, University of North Carolina - Chapel Hill; Suhn Kyong Rhie, University of Southern California; Christoper Armoskus, University of Southern California; Adrian
Camarena, University of Southern California; Peggy J Farnham, University of Southern California; Valeria N Spitsyna, University of Southern California; Heather Witt, University of Southern California; Shannon Schreiner, University of
Southern California; Oleg V Evgrafov, SUNY Downstate Medical Center; James A Knowles, SUNY Downstate Medical Center; Mark Gerstein, Yale University; Shuang Liu, Yale University; Daifeng Wang, Stony Brook University; Fabio C. P.
Navarro, Yale University; Jonathan Warrell, Yale University; Declan Clarke, Yale University; Prashant S. Emani, Yale University; Mengting Gu, Yale University; Xu Shi, Yale University; Min Xu, Yale University; Yucheng T. Yang, Yale University;
Robert R. Kitchen, Yale University; Gamze Gursoy, Yale University; Jing Zhang, Yale University; Becky C Carlyle, Yale University; Angus C Nairn, Yale University; Mingfeng Li, Yale University; Sirisha Pochareddy, Yale University; Nenad
Sestan, Yale University; Mario Skarica, Yale University; Zhen Li, Yale University; Andre M.M. Sousa, Yale University; Gabriel Santpere, Yale University; Jinmyung Choi, Yale University; Ying Zhu, Yale University; Tianliuyun Gao, Yale i
University; Daniel J Miller, Yale University; Adriana Cherskov, Yale University; Mo Yang, Yale University; Anahita Amiri, Yale University; Gianfilippo Coppola, Yale University; Jessica Mariani, Yale University; Soraya Scuderi, Yale University; m
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Info about content in this slide pack

 General PERMISSIONS

- This Presentation is copyright Mark Gerstein,
Yale University, 2017.

- Please read permissions statement at

www.gersteinlab.org/misc/permissions.htmi .

- Feel free to use slides & images in the talk with PROPER acknowledgement
(via citation to relevant papers or link to gersteinlab.org).

- Paper references in the talk were mostly from Papers.GersteinLab.org.

« PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and

clipped images in this presentation see http://streams.gerstein.info .

- In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be
easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt
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