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Transcriptome 
Mining: 

Population-scale genomic analysis 
to better understand mental disease 

& the subtle privacy risks 
of this activity

Mark Gerstein, Yale

Slides freely downloadable from 
Lectures.GersteinLab.org

& “tweetable” (via @markgerstein). 
See last slide for more info.



Transcriptome = Gene Activity of All Genes in the Genome, 
usually quantified by RNA-seq

Genes (DNA)

RNA 
transcripts

Protein 
coding 
mRNA

Proteins

Non-coding 
regulatory 

RNAs

Regulation
Transcription

Translation
Gene Expression 
measured by RNA-seq

[ NATURE 459: 927; NAT. REV. GEN. 10: 57 ]   
Expression of genes is quantified by transcription: 
RNA-Seq measures mRNA transcript amounts
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ATACAAGCAAGTATAAGTTCGTATGCCGTCTT
GGAGGCTGGAGTTGGGGACGTATGCGGCATAG
TACCGATCGAGTCGACTGTAAACGTAGGCATA
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Fastq sequence files
~5-10 GB

[NAT. REV. 10: 57; PLOS CB 4:e1000158; PNAS 4:107: 5254 ]

Quantitative information from RNA-seq signal: 
average signals at exon level (RPKMs)

Reads => Signal

BAM files
~1-2-fold reduction

Index-building + Alignment to reference genome

BigWig files
~25-fold reduction

Conversion to signal track by overlapping reads

Gene/Transcript 
expression matrix
~20-fold reduction

Mapping 
to genes

RNA-Seq Overview
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Activity Patterns • RNA Seq. gives rise to activity patterns 
of genes & regions in the genome
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Some Core Science Qs Addressed by RNA-seq

• Gene activity as a function of:
- Developmental stage: basic patterns of co-active genes across 

development
- Cell-type & Tissue: relationship to specialized functions
- Evolutionary relationships: behavior preserved across a wide 

range of organisms; patterns in model organisms in relation to 
those in humans 

- Individual, across the human population 
- Disease phenotypes: disruption of patterns in disease

• Some overarching Qs: 
Are there core patterns of gene activity ?
How do they vary across individual ? 
Are they disrupted by disease? 
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Studying large-scale transcriptome data 
also produces 

Data Exhaust

• Data Exhaust = Exploitable byproducts of big data 
collection and analysis

• Creative use of Data is key to Data Science !
[PHOTO: RELAXNEWS; from http://www.lapresse.ca]

Data collection and 
analysis

Front End
Core scientific 

purposes
Data Exhaust

Back end

Metadata

Data on 
Collaboration, 

publication and 
Infrastructure



Transcriptome Mining: Population-scale genomic analysis to better 
understand mental disease & the subtle privacy risks of this activity

• [Core] PsychENCODE: 
Population-level analysis of 
functional genomics data related 
to mental disease
- Consortium intro & construction 

of an adult brain resource w/ 
1866 individuals 

- Explanation of across-population 
variation via changing 
proportions of cell types (using 
single-cell deconvolution)

- Generation of a large QTL 
resource (~2.5M eQTLs)

- Regulatory network construction 
using QTLs, Hi-C & activity 
relationships. Using this to link 
GWAS SNPs to genes.

- Embedding the reg. network in a 
deep-learning model (DSPN) to 
predict psychiatric disease 
phenotype from genotype & 
transcriptome 

• [Exhaust] Genomic Privacy & RNA-seq
- Introduction to Genomic Privacy 

• The dilemma: The genome as fundamental, 
inherited info that’s very private v. need for 
large-scale mining for med. research

• 2-sided nature of RNA-seq presents 
particularly tricky privacy issues

- Using file formats to remove obvious variants
- eQTLs: Quantifying & removing further variant 

info from expression levels w/ ICI & 
predictability. Instantiating a practical linking 
attack w/ noisy quasi-identifiers

- Signal Profiles: Manifest appreciable leakage 
from large & small deletions. Linking attacks 
possible but additional complication of SV 
discovery in addition to genotyping

• [Exhaust] Publication Patterns
from data producing consortia
- Co-authorship network stats relate to publication 

rollouts & show gradual adoption by community
- Key role of brokers in data dissemination
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The PsychENCODE consortium
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Some of the Qs addressed by PsychENCODE

• Many psychiatric conditions are highly heritable
- Schizophrenia: up to 80%

• But we don’t understand basic molecular mechanisms underpinning this 
association 
(in contrast to many other diseases such as cancer & heart disease)

• Moreover, current models substantially underestimate heritability using genetic 
data
- Schizophrenia : ~25%

• Thus, interested in developing predictive models of psychiatric traits which:
- Use observations at intermediate (molecular levels) levels to inform latent structure
- Use the predictive features of these “molecular endo phenotypes” to begin to suggest 

actors involved in mechanism
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Collecting functional genomic datasets 
for the adult human brain from PsychENCODE, 

other large consortia & single cell studies
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Neuronal & glial cell fraction change 
across gender & disorders

NB - Excitatory to Inhibitory imbalance at neuronal subtype level for ASD

Rubenstein et al., Model of autism: increased ratio of excitation/inhibition in key neural systems, Genes Brain Behav. 2003
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Brain eQTL sets larger than previous studies

PsychENCODE all eGenes

PsychENCODE coding eGenes

CommonMind

HBCC
BrainCloud
GTEx BA9

200 400 600 800 1000 1200 1400
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π1=0.9

π1=0.93 Brain DLPFC

Liver

Lung

Testis

Blood

1.0 0.5 0.5 1.0          SNP-eGene pair π1

          GTEx Overlap

• Brain eQTLs (FDR< 0.05)
– 32944(75%) eGenes
– 2,542,908 eQTLs
– 1,341,182  unique cis-eSNPs

(~238K independent SNPs after linkage-disequilibrium (LD) pruning)

• Large overlap with GTEx brain eQTLs
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Many multi-QTLs 
(ie SNP acting as 

both cQTL & eQTL)

eQTLs for aging gene, mammalian target 
of rapamycin (mTOR) potentially mediated 
by cQTLs

eQTLs and cQTLs
significantly overlap
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Gene regulatory 
network 

construction
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Linking GWAS non-coding SNPs to new disease 
genes using gene regulatory network

142 GWAS SNPs, 22 
genes for schizophrenia 
(SCZ)*

* A. F. Pardinas et al., Common schizophrenia alleles are enriched in mutation-intolerant 
genes and in regions under strong background selection. Nat Genet 50, 381-389 (2018)

early cortical 
specification

promote neuronal 
apoptosis (cell 
death) 
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Integrative modeling of brain phenotype data
• We use the framework of Boltzmann machines to 

integrate phenotypes at multiple levels, while 
conditioning on genotype

• Evaluate joint Energy model of conditional 
distribution

• Inference and training
- Prediction by minimizing free energy
- ‘Persistent’ MCMC for training

• Boltzmann machine variables
- x: visible units
- h: hidden units
- z: conditioning units
- W: weights

𝑝 𝐱, 𝐡|𝐳 = exp −𝐸 𝐱, 𝐡|𝐳 𝑍⁄ (𝐳)

𝐸 𝐱, 𝐡|𝐳 = −𝐳1𝐖𝟏𝐱 −𝐱1 𝐖𝟐𝐱 − 𝐱1𝐖𝟑𝐡 − 𝐡1𝐖𝟒𝐡 − 𝑩𝒊𝒂𝒔

𝑍(𝐳) =; exp −𝐸 𝐱, 𝐡|𝐳
�

𝐱,𝐡
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Deep Structured Phenotype Network (DSPN)

𝐡

𝐱

𝐳

x

Boltzmann machine variables
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Deep Structured Phenotype Network (DSPN)

Gene network 
structure
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DSPN improves brain disease prediction

Method SCZ BPD ASD AVG (SCZ+BPD+ASD)

LR-gene 54.6% ( 0.5%) 56.7% ( 2.5%) 50.0% ( 0.0%) 53.8% ( 1.0%)

LR-trans 63.0% ( 4.8%) 63.3% ( 6.3%) 51.7% ( 1.8%) 59.3% ( 4.3%)

cRBM 70.0% (31.0%) 71.1% (22.6%) 56.7% ( 3.8%) 65.9% (19.1%)

DSPN-imput 59.0% ( 1.8%) 67.2% (10.7%) 62.5% ( 2.6%) 62.9% ( 5.0%)

DSPN-full 73.6% (32.8%) 76.7% (37.4%) 68.3% (14.4%) 72.9% (28.2%)

X 
6.

0
(X

28
.2

)

X 
3.

4 
(X

5.
0)

X 
2.

5
(X

 6
.6

)
X 

1.
8 

(X
5.

6)
X 

2.
4 

(X
4.

3)

Unbracketed figures show test-set performance accuracy, with chance at 50%; bracketed figures show variance 
explained on liability scale

Model complexity increasing increasing constant increasing
Predictors genotype transcriptome genotype->transcriptome genotype->transcriptome

* Brainstorm consortium (~1.2 million individuals, Science, 2018) used linear predictive model 
to find that common SNPs explain 25.6%, 20.5%, and 19% of the genetic variance for SCZ, BPD 
and ASD

Accuracy = chance to correctly predict disease/health
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DSPN discovers molecular pathways 
from genotype to phenotype
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- Using file formats to remove obvious variants
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2-sided nature of functional 
genomics data: Analysis can be 

very General/Public
or Individual/Private

• General quantifications related to overall aspects 
of a condition – ie gene activity as a function of:
- Developmental stage, Evolutionary relationships, Cell-type, Disease

• Above are not tied to an individual’s genotype. However, data is 
derived from individuals & tagged with their genotypes

• (Note, a few calculations aim to use explicitly genotype to derive general 
relations related to sequence variation & gene expression - eg allelic activity)
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Genomics has similar 
"Big Data" Dilemma in 

the Rest of Society

• Sharing & "peer-
production" is central to 
success of many new 
ventures, with the same 
risks as in genomics
-EG web search: Large-

scale mining essential

• We confront privacy 
risks every day we 
access the internet

[Seringhaus & Gerstein ('09), Hart. Courant (Jun 5); Greenbaum & Gerstein ('11), NY Times (6 Oct)]
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Tricky	Privacy	Considerations	in	Personal	Genomics

• Genetic 
Exceptionalism : 
The Genome is very 
fundamental data, 
potentially very 
revealing about one’s 
identity & 
characteristics

• Personal Genomic 
info. essentially 
meaningless 
currently but will it 
be in 20 yrs? 50 yrs?
- Genomic sequence 

very revealing about 
one’s children. Is true 
consent possible?

- Once put on the web 
it can’t be taken back 

• Culture Clash:
Genomics historically has been a 
proponent of “open data” but not clear 
personal genomics fits this. 
- Clinical Medline has a very different 

culture.
• Ethically challenged history of genetics 
- Ownership of the data & what consent 

means (Hela)
• Could your genetic data give rise to a 

product line? 

[D Greenbaum & M Gerstein (’08). Am J. Bioethics; D Greenbaum & M Gerstein, Hartford Courant, 10 Jul. '08 ; SF Chronicle, 2 Nov. '08; 
Greenbaum et al. PLOS CB (‘11) ; Greenbaum & Gerstein ('13), The Scientist; Photo from NY Times]
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The Other Side of the Coin:
Why we should share

• Sharing helps speed research
- Large-scale mining of this information is 

important for medical research
- Privacy is cumbersome, particularly for big 

data
• Sharing is important for reproducible research
• Sharing is useful for education
- More fun to study a known person’s genome 

• Eg Zimmer’s Game of Genomes in STAT 
[Yale Law Roundtable (‘10). Comp. in Sci. & 
Eng. 12:8; D Greenbaum & M Gerstein (‘09). 
Am. J. Bioethics; D Greenbaum & M Gerstein 
(‘10). SF Chronicle, May 2, Page E-4; 
Greenbaum et al. PLOS CB (‘11)]
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The Dilemma

• The individual (harmed?) v the collective (benefits)
- But do sick patients care about their privacy?

• How to balance risks v rewards - Quantification
- What is acceptable risk? 

Can we quantify leakage?
• Ex: photos of eye color

- Cost Benefit Analysis

[Economist, 15 Aug ‘15]
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Current Social & Technical Solutions

• Closed Data Approach
- Consents
- “Protected” distribution via dbGAP
- Local computes on secure computer

• Issues with Closed Data
- Non-uniformity of consents & paperwork

• Different international norms, leading to 
confusion

- Encryption & computer security creates 
burdensome requirements on data 
sharing & large scale analysis

- Many schemes get “hacked”

• Open Data
- Genomic "test pilots” 

(ala PGP)?
• Sports stars & 

celebrities?

- Some public data & 
data donation is 
helpful but is this a 
realistic solution for 
an unbiased sample 
of ~1M

[Greenbuam et al ('04), Nat. Biotech; Greenbaum & Gerstein ('13), The Scientist]
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Strawman Hybrid Social & Tech Proposed Solution?

• Fundamentally, researchers 
have to keep genetic secrets.
- Need for an (international) 

legal framework
- Genetic Licensure & training 

for individuals 
(similar to medical license, 
drivers license)

• Technology to make things 
easier
- Cloud computing & enclaves 

(eg solution of Genomics 
England)

• Technological barriers 
shouldn't create a social 
incentive for “hacking”

• Quantifying Leakage & 
allowing a small amounts of it 

• Careful separation & coupling 
of private & public data 
- Lightweight, freely accessible 

secondary datasets coupled 
to underlying variants 

- Selection of stub & "test pilot" 
datasets for benchmarking

- Develop programs on public 
stubs on your laptop, then move 
the program to the cloud for 
private production run

[D Greenbaum, M Gerstein (‘11). Am J Bioeth 11:39. Greenbaum & Gerstein, The Scientist ('13)]
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Leakage 
 Source

Raw reads

Modified reads
Q = {indels}

Signal profiles

Gene expression
quantification

Modified reads
Q = {mismatches}

Leaking
Variants

Exonic 
variants
Exonic
SNVs

Exonic 
indels

Exonic 
deletions

eQTLs

# of potential
variants

2,682,417

48,019

3,175

Average leakage
per variant (bits)

0.10 ± 0.28

0.29 ± 0.45

1.19 ± 0.36

Maximum leakage
per variant (bits)

9.88 ± 2.12

7.97 ± 2.42

4.00 ± 1.92

# of accessible
variants

231,031

1,067

158

Total leakage
(bits)

24,689

298

188

2,607,969

51,408 0.33 ± 0.47

0.09 ± 0.27 9.95 ± 2.02

7.64 ± 2.42 15,862

246,893

207,92

5234

[Gursoy et al, Bioarvix]

NA12878 as case 
study - 1000 
genomes variants 
are used as gold 
standard

Functional genomics data comes with a great deal of sequencing; 
We can quantify amount of leakage at every step of the data 

summarization process. 
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• How much information, for example, do RNA-
Seq reads (or ChIP-Seq) reads contain? Does 
that information enough to identify 
individuals?

[Gursoy et al, Bioarvix]

• It might seem like we don’t infer much 
information from single ChIP-Seq and RNA-
Seq experiments compared to WGS

• However putting 10 different 
ChIP-Seq experiments and 
RNA-Seq together with 
imputation provides a great 
deal of information about the 
individual
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Light-weight formats to Hide Most 
of the Read Data (Signal Tracks)

• Some lightweight format clearly separate public & 
private info., aiding exchange

• Files become much smaller
• Distinction between formats to compute on and those 

to archive with – become sharper with big data

Mapping coordinates 
without variants (MRF)

Reads 
(linked via ID, 
10X larger than 
mapping coord.)[Bioinformatics 27: 281]
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Privacy-aware	Binary	Alignment	Mapping	(pBAM)

• A	manipulation	on	Binary	Alignment	Files	(BAM)	
• Suppression:	 replace	sequence	and	quality	string	with	(*)
• Generalization:	convert	cigar,	alignment	score	and	MD	tag	into	perfectly	matched	

strings

• Works	with	majority	of	functions	 of	SAMtools.

[Gursoy et al, Bioarvix]



3
6

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

pBAMs are	high	in	utility	and	can	be	converted	BAM

• Works	well	with	many	functional	

genomics	pipelines,	 including	 STAR	

signal	tracks,	RSEM	gene	expression	

and	quantification	and	MACS2	for	

ChIP-Seq peak	calling.

• The	original	BAM	does	not	need	be	

stored.	Rather,	a	smaller	file	called	.diff	

can	be	safely	stored	for	sensitive	

information	 in	the	BAM	file.

[Gursoy et al, Bioarvix]



Transcriptome Mining: Population-scale genomic analysis to better 
understand mental disease & the subtle privacy risks of this activity

• [Core] PsychENCODE: 
Population-level analysis of 
functional genomics data related 
to mental disease
- Consortium intro & construction 

of an adult brain resource w/ 
1866 individuals 

- Explanation of across-population 
variation via changing 
proportions of cell types (using 
single-cell deconvolution)

- Generation of a large QTL 
resource (~2.5M eQTLs)

- Regulatory network construction 
using QTLs, Hi-C & activity 
relationships. Using this to link 
GWAS SNPs to genes.

- Embedding the reg. network in a 
deep-learning model (DSPN) to 
predict psychiatric disease 
phenotype from genotype & 
transcriptome 

• [Exhaust] Genomic Privacy & RNA-seq
- Introduction to Genomic Privacy 

• The dilemma: The genome as fundamental, 
inherited info that’s very private v. need for 
large-scale mining for med. research

• 2-sided nature of RNA-seq presents 
particularly tricky privacy issues

- Using file formats to remove obvious variants
- eQTLs: Quantifying & removing further variant 

info from expression levels w/ ICI & 
predictability. Instantiating a practical linking 
attack w/ noisy quasi-identifiers

- Signal Profiles: Manifest appreciable leakage 
from large & small deletions. Linking attacks 
possible but additional complication of SV 
discovery in addition to genotyping

• [Exhaust] Publication Patterns
from data producing consortia
- Co-authorship network stats relate to publication 

rollouts & show gradual adoption by community
- Key role of brokers in data dissemination
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Representative Functional Genomics, Genotype, 
eQTL Datasets

• Genotypes are available from the 1000 Genomes 
Project

• mRNA sequencing for 462 individuals from gEUVADIS
and ENCODE
-Publicly available quantification for protein coding 

genes
• Functional genomics data (ChIP-Seq, RNA-Seq, Hi-C) 

available from ENCODE
• Approximately 3,000 cis-eQTL (FDR<0.05)
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eQTL Mapping 
Using RNA-Seq

Data

[Biometrics 68(1) 1–11]

• eQTLs are genomic loci 
that contribute to 
variation in mRNA 
expression levels

• eQTLs provide insights 
on transcription 
regulation, and the 
molecular basis of 
phenotypic outcomes

• eQTL mapping can be 
done with RNA-Seq data
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Information Content and Predictability

[Harmanci et al. Nat. Meth.  2016]

• Naive measure of information 
(no LD, distant correlations, 
pop. struc., &c)

• Higher frequency: Lower ICI
• Additive for multiple variants

• Condition specific entropy
• Higher cond. entropy: Lower 

predictability
• Additive for multiple eQTLs



4
1

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rgICI Leakage versus 
Genotype 

Predictability

[Harmanciet al. Nat. Meth. (‘16]
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Linking Attack Scenario

[Harmanciet al. Nat. Meth. (in revision)]
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Linking Attacks: Case of Netflix Prize

User (ID) Movie (ID) Date of Grade Grade [1,2,3,4,5]

NTFLX-0 NTFLX-19 10/12/2008 1

NTFLX-1 NTFLX-116 4/23/2009 3

NTFLX-2 NTFLX-92 5/27/2010 2

NTFLX-1 NTFLX-666 6/6/2016 5

… … … …

… … … …

User (ID) Movie (ID) Date of Grade Grade [0-10]

IMDB-0 IMDB-173 4/20/2009 5

IMDB-1 IMDB-18 10/18/2008 0

IMDB-2 IMDB-341 5/27/2010 -

… … … …

… … … …

… … … …

Names available for many users!

• Many users are shared
• The grades of same users are correlated
• A user grades one movie around the same date in two databases

Anonymized	Netflix	Prize	Training	Dataset	
made	available	to	contestants
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Linking Attacks: Case of Netflix Prize

User (ID) Movie (ID) Date of Grade Grade [1,2,3,4,5]

NTFLX-0 NTFLX-19 10/12/2008 1

NTFLX-1 NTFLX-116 4/23/2009 3

NTFLX-2 NTFLX-92 5/27/2010 2

NTFLX-1 NTFLX-666 6/6/2016 5

… … … …

… … … …

User (ID) Movie (ID) Date of Grade Grade [0-10]

IMDB-0 IMDB-173 4/20/2009 5

IMDB-1 IMDB-18 10/18/2008 0

IMDB-2 IMDB-341 5/27/2010 -

… … … …

… … … …

… … … …

Names available for many users!

• Many users are shared
• The grades of same users are correlated
• A user grades one movie around the same date in two databases

• IMDB users are public

• NetFLIX and IMdB moves are public
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Linking Attacks: Case of Netflix Prize

User (ID) Movie (ID) Date of Grade Grade [1,2,3,4,5]

NTFLX-0 NTFLX-19 10/12/2008 1

NTFLX-1 NTFLX-116 4/23/2009 3

NTFLX-2 NTFLX-92 5/27/2010 2

NTFLX-1 NTFLX-666 6/6/2016 5

… … … …

… … … …

User (ID) Movie (ID) Date of Grade Grade [0-10]

IMDB-0 IMDB-173 4/20/2009 5

IMDB-1 IMDB-18 10/18/2008 0

IMDB-2 IMDB-341 5/27/2010 -

… … … …

… … … …

… … … …

Names available for many users!

• Many users are shared
• The grades of same users are correlated
• A user grades one movie around the same date in two databases
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Linking Attack Scenario

[Harmanciet al. Nat. Meth. (in revision)]
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Levels of Expression-Genotype Model 
Simplifications for Genotype Prediction

[Harmanci et al. Nat. Meth. (16)]
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Success in Linking Attack 
with Extremity based Genotype Prediction

200 individuals eQTL Discovery 
200 individuals in Linking AttackHigh

Sensitivity

Low
Sensitivity

High Number
Of eQTLs

Low Number
Of eQTLs

[Harmanci et al. Nat. Meth. (16)]
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Success in Linking Attack 
with Extremity based Genotype Prediction

200 individuals eQTL Discovery 
200 individuals in Linking Attack

200 individuals eQTL Discovery 
100,200 individuals in Linking Attack

[Harmanci et al. Nat. Meth. (16)]



Transcriptome Mining: Population-scale genomic analysis to better 
understand mental disease & the subtle privacy risks of this activity

• [Core] PsychENCODE: 
Population-level analysis of 
functional genomics data related 
to mental disease
- Consortium intro & construction 

of an adult brain resource w/ 
1866 individuals 

- Explanation of across-population 
variation via changing 
proportions of cell types (using 
single-cell deconvolution)

- Generation of a large QTL 
resource (~2.5M eQTLs)

- Regulatory network construction 
using QTLs, Hi-C & activity 
relationships. Using this to link 
GWAS SNPs to genes.

- Embedding the reg. network in a 
deep-learning model (DSPN) to 
predict psychiatric disease 
phenotype from genotype & 
transcriptome 

• [Exhaust] Genomic Privacy & RNA-seq
- Introduction to Genomic Privacy 

• The dilemma: The genome as fundamental, 
inherited info that’s very private v. need for 
large-scale mining for med. research

• 2-sided nature of RNA-seq presents 
particularly tricky privacy issues

- Using file formats to remove obvious variants
- eQTLs: Quantifying & removing further variant 

info from expression levels w/ ICI & 
predictability. Instantiating a practical linking 
attack w/ noisy quasi-identifiers

- Signal Profiles: Manifest appreciable leakage 
from large & small deletions. Linking attacks 
possible but additional complication of SV 
discovery in addition to genotyping

• [Exhaust] Publication Patterns
from data producing consortia
- Co-authorship network stats relate to publication 

rollouts & show gradual adoption by community
- Key role of brokers in data dissemination
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ChIP-Seq
Signals

Large Deletion Genomic 
Coordinate

RNA-Seq
Signal

Small Deletion
A		C			G		T			A			C		G

Genomic 
Coordinate

[Harmanci & Gerstein, Nat. Comm. (‘18)]

Detection & Genotyping of small & large 
SV deletions from signal profiles

RNA-seq also shows large deletions
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[Harmanci & Gerstein, Nat. Comm. (‘18)]

Example of Small Deletion Evident in Signal Profile
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[Harmanci & Gerstein, Nat. Comm. (‘18)]

Example of Large Deletion Evident in Signal Profile
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a)Before Anonymization b) After Anonymization

[Harmanci & Gerstein, Nat. Comm. (‘18)]

Information Leakage from SV Deletions

Simple anonymization procedure (filling in deletion by value at endpoints) has dramatic effect
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Another type of Linking Attack: 
Linking based on SV Genotyping

Comparison of SV 
Panels and 
Genotype 
Matching

SV-bSV-1 SV-3 SV-N⋮

Structural Variants Genotype 
Dataset 

(Stolen/Legally Obtained)

⋮

Patient 
Name

⋮

SV-bSV-1 SV-3 SV-N⋮
⋮

⋮
⋮

⋮ ⋮⋮⋮

0 1 2 0

2 0 2 1

1 2 2 2

⋮0 1 1 0

GIND-1

GIND-2

GIND-K

GIND-3

SV-2SV-1 SV-3 SV-N⋮

SV Panel for Signal Profiles Structural Variants Panel
(Stolen/Legally Obtained)

Predicted SV 
Genotype Dataset

⋮

SV-2SV-1 SV-3 SV-N⋮
⋮

⋮
⋮

⋮ ⋮⋮⋮

0 0 2 2

2 0 X 0

0 X X 0

SIND-1

SIND-2

SIND-n

⋮ ⋮

HIV Status

⋮

Genotype in " / Genotype in "#
SV-3SV-1 SV-N⋮

⋮
⋮

⋮
⋮ ⋮⋮⋮

0/0 1/0 0/2

0/2 1/0 0/0

0/0 1/X 0/0

⋮ ⋮

HIV Status

SIND-1

SIND-2

SIND-n

GIND-2

GIND-1

GIND-3

("#)
(")

(&')(&()

0 / 2

SV-N

Genotype of SV-N in
SV Genotype
Dataset (")

Genotype of SV-N in
Predicted Genotype

Dataset ("#)

Anonymized
Sample ID

Anonymized
Sample ID

Patient 
Name

[Harmanci & Gerstein, Nat. Comm. (‘18)]
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Another type of Linking Attack: 
First Doing SV Genotyping

Si
gn
al

⋮⋮

Genomewide Signal ProfilesAnonymized
Sample ID

⋮

HIV Status

Genomic	Coordinate

Genomewide Signal Profile Dataset (Public)

SV
Discovery
(Optional)

SIND-1

SIND-2

SIND-n

SV-2SV-1 SV-3 SV-N⋮

Genomic Coordinate
Discovered/Supplied 

SV Panel for Signal Profiles

SV
Genotyping

Predicted SV Genotype Dataset

⋮

SV Genotypes
SV-2SV-1 SV-3 SV-N⋮

⋮
⋮

⋮

⋮ ⋮⋮⋮

0 0 2 2

2 0 X 0

0 X X 0

SIND-1

SIND-2

SIND-n

⋮ ⋮

HIV Status

(#$)

(&')

(()

Supplied 
SV Panel
(Optional)

2

1

1

2
or

3

Anonymized
Sample ID

[Harmanci & Gerstein, Nat. Comm. (‘18)]
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c) Genotyping
(1kG MAF>0.01) d) Discovery + Genotyping

Sorted in Decreasing 
Predictability

Sorted in Decreasing 
Predictability

Linking Attack Based on SV Deletions in 
gEUVADIS Dataset 

[Harmanci & Gerstein, Nat. Comm. (‘18)]



Transcriptome Mining: Population-scale genomic analysis to better 
understand mental disease & the subtle privacy risks of this activity

• [Core] PsychENCODE: 
Population-level analysis of 
functional genomics data related 
to mental disease
- Consortium intro & construction 

of an adult brain resource w/ 
1866 individuals 

- Explanation of across-population 
variation via changing 
proportions of cell types (using 
single-cell deconvolution)

- Generation of a large QTL 
resource (~2.5M eQTLs)

- Regulatory network construction 
using QTLs, Hi-C & activity 
relationships. Using this to link 
GWAS SNPs to genes.

- Embedding the reg. network in a 
deep-learning model (DSPN) to 
predict psychiatric disease 
phenotype from genotype & 
transcriptome 

• [Exhaust] Genomic Privacy & RNA-seq
- Introduction to Genomic Privacy 

• The dilemma: The genome as fundamental, 
inherited info that’s very private v. need for 
large-scale mining for med. research

• 2-sided nature of RNA-seq presents 
particularly tricky privacy issues

- Using file formats to remove obvious variants
- eQTLs: Quantifying & removing further variant 

info from expression levels w/ ICI & 
predictability. Instantiating a practical linking 
attack w/ noisy quasi-identifiers

- Signal Profiles: Manifest appreciable leakage 
from large & small deletions. Linking attacks 
possible but additional complication of SV 
discovery in addition to genotyping

• [Exhaust] Publication Patterns
from data producing consortia
- Co-authorship network stats relate to publication 

rollouts & show gradual adoption by community
- Key role of brokers in data dissemination
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The Human
Genome Project

Worm
Genome
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The Human
Genome Project

Worm
Genome

ENCODE
Pilot

ENCODE
Production

modENCODE
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The Human
Genome Project

Worm
Genome

ENCODE
Pilot

ENCODE
Production

modENCODE

Comparative
ENCODE
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The Human
Genome Project

Worm
Genome

ENCODE
Pilot

1000 Genomes
Pilot

ENCODE
Production

1000 Genomes
ProductionmodENCODE

Comparative
ENCODE
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The Human
Genome Project

Worm
Genome

ENCODE
Pilot

Comparative
ENCODE

Epigenome
Roadmap

1000 Genomes
Pilot

GTEx

ENCODE
Production

1000 Genomes
ProductionmodENCODE
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With help of M Pazin at NHGRI, identified: 702 community papers that used ENCODE 
data but were not supported by ENCODE funding & 
558 consortium papers supported by ENCODE funding
(https://www.encodeproject.org/search/?type=Publication for up-to-date query)  
Then identified 1,786 ENCODE members & 8,263 non-members .
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co-authorship

[Wang	et	al.,	TIG	(’16)]2014

Co-authorship Network of 
ENCODE members 

& Data Users
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co-authorship

[Wang	et	al.,	TIG	(’16)]2014

Co-authorship Network of 
ENCODE members 

& Data Users
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co-authorship

[Wang	et	al.,	TIG	(’16)]2014

Co-authorship Network of 
ENCODE members 

& Data Users
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2014
co-authorship [Wang	et	al.,	TIG	(’16)]

Dynamics of co-
authorship network
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2004

2005

2006

2007

2008

2009 2010

2011

2012

2013

2014
co-authorship [Wang	et	al.,	TIG	(’16)]

Dynamics of co-
authorship network
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co-authorship [Wang	et	al.,	TIG	(’16)]

Dynamics of co-
authorship network
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Transcriptome Mining: Population-scale genomic analysis to better 
understand mental disease & the subtle privacy risks of this activity

• [Core] PsychENCODE: 
Population-level analysis of 
functional genomics data related 
to mental disease
- Consortium intro & construction 

of an adult brain resource w/ 
1866 individuals 

- Explanation of across-population 
variation via changing 
proportions of cell types (using 
single-cell deconvolution)

- Generation of a large QTL 
resource (~2.5M eQTLs)

- Regulatory network construction 
using QTLs, Hi-C & activity 
relationships. Using this to link 
GWAS SNPs to genes.

- Embedding the reg. network in a 
deep-learning model (DSPN) to 
predict psychiatric disease 
phenotype from genotype & 
transcriptome 

• [Exhaust] Genomic Privacy & RNA-seq
- Introduction to Genomic Privacy 

• The dilemma: The genome as fundamental, 
inherited info that’s very private v. need for 
large-scale mining for med. research

• 2-sided nature of RNA-seq presents 
particularly tricky privacy issues

- Using file formats to remove obvious variants
- eQTLs: Quantifying & removing further variant 

info from expression levels w/ ICI & 
predictability. Instantiating a practical linking 
attack w/ noisy quasi-identifiers

- Signal Profiles: Manifest appreciable leakage 
from large & small deletions. Linking attacks 
possible but additional complication of SV 
discovery in addition to genotyping

• [Exhaust] Publication Patterns
from data producing consortia
- Co-authorship network stats relate to publication 

rollouts & show gradual adoption by community
- Key role of brokers in data dissemination
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PsychENCODE
Acknowledgment

• Geetha Senthil
• Lora Bingaman
• David Panchision
• Alexander Arguello
• Thomas Lehner

The PsychENCODE Consortium: Allison E Ashley-Koch, Duke University; Gregory E Crawford, Duke University; Melanie E Garrett, Duke University; Lingyun Song, Duke University; Alexias Safi, Duke University; 
Graham D Johnson, Duke University; Gregory A Wray, Duke University; Timothy E Reddy, Duke University; Fernando S Goes, Johns Hopkins University; Peter Zandi, Johns Hopkins University; Julien Bryois, Karolinska Institutet; Andrew E 
Jaffe, Lieber Institute for Brain Development; Amanda J Price, Lieber Institute for Brain Development; Nikolay A Ivanov, Lieber Institute for Brain Development; Leonardo Collado-Torres, Lieber Institute for Brain Development; Thomas M 
Hyde, Lieber Institute for Brain Development; Emily E Burke, Lieber Institute for Brain Development; Joel E Kleiman, Lieber Institute for Brain Development; Ran Tao, Lieber Institute for Brain Development; Joo Heon Shin, Lieber Institute for 
Brain Development; Schahram Akbarian, Icahn School of Medicine at Mount Sinai; Kiran Girdhar, Icahn School of Medicine at Mount Sinai; Yan Jiang, Icahn School of Medicine at Mount Sinai; Marija Kundakovic, Icahn School of Medicine at 
Mount Sinai; Leanne Brown, Icahn School of Medicine at Mount Sinai; Bibi S Kassim, Icahn School of Medicine at Mount Sinai; Royce B Park, Icahn School of Medicine at Mount Sinai; Jennifer R Wiseman, Icahn School of Medicine at Mount 
Sinai; Elizabeth Zharovsky, Icahn School of Medicine at Mount Sinai; Rivka Jacobov, Icahn School of Medicine at Mount Sinai; Olivia Devillers, Icahn School of Medicine at Mount Sinai; Elie Flatow, Icahn School of Medicine at Mount Sinai; 
Gabriel E Hoffman, Icahn School of Medicine at Mount Sinai; Barbara K Lipska, Human Brain Collection Core, National Institutes of Health, Bethesda, MD; David A Lewis, University of Pittsburgh; Vahram Haroutunian, Icahn School of Medicine 
at Mount Sinai and James J Peters VA Medical Center; Chang-Gyu Hahn, University of Pennsylvania; Alexander W Charney, Mount Sinai; Stella Dracheva, Mount Sinai; Alexey Kozlenkov, Mount Sinai; Judson Belmont, Icahn School of 
Medicine at Mount Sinai; Diane DelValle, Icahn School of Medicine at Mount Sinai; Nancy Francoeur, Icahn School of Medicine at Mount Sinai; Evi Hadjimichael, Icahn School of Medicine at Mount Sinai; Dalila Pinto, Icahn School of Medicine at 
Mount Sinai; Harm van Bakel, Icahn School of Medicine at Mount Sinai; Panos Roussos, Mount Sinai; John F Fullard, Mount Sinai; Jaroslav Bendl, Mount Sinai; Mads E Hauberg, Mount Sinai; Lara M Mangravite, Sage Bionetworks; Mette A 
Peters, Sage Bionetworks; Yooree Chae, Sage Bionetworks; Junmin Peng, St. Jude Children's Hospital; Mingming Niu, St. Jude Children's Hospital; Xusheng Wang, St. Jude Children's Hospital; Maree J Webster, Stanley Medical Research 
Institute; Thomas G Beach, Banner Sun Health Research Institute; Chao Chen, Central South University; Yi Jiang, Central South University; Rujia Dai, Central South University; Annie W Shieh, SUNY Upstate Medical University; Chunyu Liu, 
SUNY Upstate Medical University; Kay S. Grennan, SUNY Upstate Medical University; Yan Xia, SUNY Upstate Medical University/Central South University; Ramu Vadukapuram, SUNY Upstate Medical University; Yongjun Wang, Central South 
University; Dominic Fitzgerald, The University of Chicago; Lijun Cheng, The University of Chicago; Miguel Brown, The University of Chicago; Mimi Brown, The University of Chicago; Tonya Brunetti, The University of Chicago; Thomas 
Goodman, The University of Chicago; Majd Alsayed, The University of Chicago; Michael J Gandal, University of California, Los Angeles; Daniel H Geschwind, University of California, Los Angeles; Hyejung Won, University of California, Los 
Angeles; Damon Polioudakis, University of California, Los Angeles; Brie Wamsley, University of California, Los Angeles; Jiani Yin, University of California, Los Angeles; Tarik Hadzic, University of California, Los Angeles; Luis De La Torre 
Ubieta, UCLA; Vivek Swarup, University of California, Los Angeles; Stephan J Sanders, University of California, San Francisco; Matthew W State, University of California, San Francisco; Donna M Werling, University of California, San 
Francisco; Joon-Yong An, University of California, San Francisco; Brooke Sheppard, University of California, San Francisco; A Jeremy Willsey, University of California, San Francisco; Kevin P White, The University of Chicago; Mohana Ray, 
The University of Chicago; Gina Giase, SUNY Upstate Medical University; Amira Kefi, University of Illinois at Chicago; Eugenio Mattei, University of Massachusetts Medical School; Michael Purcaro, University of Massachusetts Medical 
School; Zhiping Weng, University of Massachusetts Medical School; Jill Moore, University of Massachusetts Medical School; Henry Pratt, University of Massachusetts Medical School; Jack Huey, University of Massachusetts Medical School; 
Tyler Borrman, University of Massachusetts Medical School; Patrick F Sullivan, University of North Carolina - Chapel Hill; Paola Giusti-Rodriguez, University of North Carolina - Chapel Hill; Yunjung Kim, University of North Carolina - Chapel 
Hill; Patrick Sullivan, University of North Carolina - Chapel Hill; Jin Szatkiewicz, University of North Carolina - Chapel Hill; Suhn Kyong Rhie, University of Southern California; Christoper Armoskus, University of Southern California; Adrian 
Camarena, University of Southern California; Peggy J Farnham, University of Southern California; Valeria N Spitsyna, University of Southern California; Heather Witt, University of Southern California; Shannon Schreiner, University of 
Southern California; Oleg V Evgrafov, SUNY Downstate Medical Center; James A Knowles, SUNY Downstate Medical Center; Mark Gerstein, Yale University; Shuang Liu, Yale University; Daifeng Wang, Stony Brook University; Fabio C. P. 
Navarro, Yale University; Jonathan Warrell, Yale University; Declan Clarke, Yale University; Prashant S. Emani, Yale University; Mengting Gu, Yale University; Xu Shi, Yale University; Min Xu, Yale University; Yucheng T. Yang, Yale University; 
Robert R. Kitchen, Yale University; Gamze Gürsoy, Yale University; Jing Zhang, Yale University; Becky C Carlyle, Yale University; Angus C Nairn, Yale University; Mingfeng Li, Yale University; Sirisha Pochareddy, Yale University; Nenad 
Sestan, Yale University; Mario Skarica, Yale University; Zhen Li, Yale University; Andre M.M. Sousa, Yale University; Gabriel Santpere, Yale University; Jinmyung Choi, Yale University; Ying Zhu, Yale University; Tianliuyun Gao, Yale 
University; Daniel J Miller, Yale University; Adriana Cherskov, Yale University; Mo Yang, Yale University; Anahita Amiri, Yale University; Gianfilippo Coppola, Yale University; Jessica Mariani, Yale University; Soraya Scuderi, Yale University; 
Anna Szekely, Yale University; Flora M Vaccarino, Yale University; Feinan Wu, Yale University; Sherman Weissman, Yale University; Tanmoy Roychowdhury, Mayo Clinic Rochester; Alexej Abyzov, Mayo Clinic Rochester;.

“Adult Capstone” Team – 1 of 3 capstones

Daifeng Wang, Shuang Liu, Jonathan Warrell, Hyejung Won, Xu 
Shi, Fabio Navarro, Declan Clarke, Mengting Gu, Prashant Emani,
Yucheng T. Yang, Min Xu, Michael Gandal, Shaoke Lou, Jing Zhang, Jonathan J. Park, 
Chengfei Yan, Suhn Kyong Rhie, Kasidet Manakongtreecheep, Holly Zhou, Aparna 
Nathan, Mette Peters, Eugenio Mattei, Dominic Fitzgerald, Tonya Brunetti, Jill Moore, 
Yan Jiang, Kiran Girdhar, Gabriel Hoffman, Selim Kalayci, Zeynep Hulya Gumus
PsychENCODE Consortium,
Panos Roussos, Schahram Akbarian, Andrew E. Jaffe, 
Kevin White, Zhiping Weng, Nenad Sestan, 

Daniel H. Geschwind, James A. Knowles

Dedicated to Pamela Sklar
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papers.gersteinlab.org/subject/privacy

PrivaSig.gersteinlab.org

PrivaSeq.gersteinlab.org

A Harmanci,

D Greenbaum
G Gürsoy, 
F Navarro, M Green

Publication patterns [“encode authors”] 

D Wang, KK Yan,  J Rozowsky, E 
Pan

Acknowledgements

Hiring Postdocs. See 
JOBS.gersteinlab.org !



7
5

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Extra



7
6

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Info about content in this slide pack
• General PERMISSIONS
-This Presentation is copyright Mark Gerstein, 

Yale University, 2017. 
-Please read permissions statement at 

www.gersteinlab.org/misc/permissions.html .
- Feel free to use slides & images in the talk with PROPER acknowledgement 

(via citation to relevant papers or link to gersteinlab.org). 
- Paper references in the talk were mostly from Papers.GersteinLab.org. 

• PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and 
clipped images in this presentation see http://streams.gerstein.info . 
- In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can be 

easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt


