

Prioritizing Variants in Personal Genomes: Using functional impact & recurrence, with particular application to cancer

> Mark Gerstein Yale

> > Slides freely

downloadable from Lectures.GersteinLab.org

& "tweetable" (via @MarkGerstein).

No Conflicts for this Talk See last slide for more info.

Personal Genomics as a Gateway into Biology

Personal genomes will soon become a commonplace part of medical research & eventually treatment (esp. for cancer). They will provide a primary connection for biological science to the general public.

Personal Genomics as a Gateway into Biology

Personal genomes will soon become a commonplace part of medical research & eventually treatment (esp. for cancer). They will provide a primary connection for biological science to the general public.

The Scaling of Genomic Data Science:

Powered by exponential increases in data & computing

(Moore's Law)

[NHGRI website + Waldrop ('15) Nature]

Exponential Scaling Changes Fields Using Genomic Data

Growth of ICGC datasets

 $\overline{\mathbf{n}}$

Lectures.GersteinLab.org

From '00 to ~'20, cost of DNA sequencing expt. shifts from the actual seq. to sample collection & analysis

Alignment algorithms scaling to keep pace with data generation

Alignment algorithms scaling to keep pace with data generation

From '00 to ~'20, cost of DNA sequencing expt. shifts from the actual seq. to sample collection & analysis

12 = Lectures.GersteinLab.org

Human Genetic Variation

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74 Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108

Finding Key Variants

Germline

Common variants

- · Can be most readily associated with phenotype (ie disease) via GWAS
- Usually their functional effect is weaker
- Many are non-coding
- Issue of LD in identifying the actual causal variant.

Rare variants

- Associations are usually underpowered due to low frequencies but often have larger functional impact
- Can be collapsed in the same element to gain statistical power (burden tests).

Finding Key Variants

Somatic

Overall

• Often these can be thought of as very rare variants

Drivers

- Driver mutation is a mutation that directly or indirectly confers a selective growth advantage to the cell in which it occurs.
- A typical tumor contains 2-8 drivers; the remaining mutations are passengers.

Passengers

• Conceptually, a passenger mutation has no direct or indirect effect on the selective growth advantage of the cell in which it occurred.

Prioritizing Variants in Personal Genomes: Using functional impact & recurrence, with particular application to cancer

- Introduction
 - An individual's disease variants as the public's gateway into genomics & biology
 - The exponential scaling of data gen. & processing
 - Big-data mining to prioritize key variants as drivers
- Functional impact #1: Coding
 - **<u>ALoFT</u>**: Annotation of Loss-of-Function Transcripts.
 - Frustration as a localized metric of SNV impact.
 Differential profiles for oncogenes v. TSGs
- Functional impact #2: Non-coding
 - **<u>uORFs</u>**: Feature integration to find small subset of upstream mutations that potentially alter translation.
 - <u>FunSeq</u> integrates evidence, with a "surprisal" based weighting scheme. Prioritizing rare variants with "sensitive sites" (human conserved)

• Recurrence:

Statistics for driver identification

- **<u>BMR</u>** (Background mutation rate) significantly varies & is correlated with replication timing & TADs
- Developed a variety of parametric & non-parametric methods taking this into account
- **LARVA** uses parametric beta-binomial model, explicitly modeling covariates
- <u>MOAT</u> does a variety of non-parm. shuffles (annotation, variants, &c). Useful when explicit covariates not available. Slower but speeded up w/ GPUs

Recurrence #2:

(Low-power) application to **pRCC**

- WGS finds additional facts on the canonical driver, MET. Other suggestive non-coding hotspots.
- Analysis of signatures & tumor evolution helps identify key mutations in different ways

Prioritizing Variants in Personal Genomes: Using functional impact & recurrence, with particular application to cancer

- Introduction
 - An individual's disease variants as the public's gateway into genomics & biology
 - The exponential scaling of data gen. & processing
 - Big-data mining to prioritize key variants as drivers
- Functional impact #1: Coding
 - **<u>ALoFT</u>**: Annotation of Loss-of-Function Transcripts.
 - Frustration as a localized metric of SNV impact.
 Differential profiles for oncogenes v. TSGs
- Functional impact #2: Non-coding
 - <u>uORFs</u>: Feature integration to find small subset of upstream mutations that potentially alter translation.
 - <u>FunSeq</u> integrates evidence, with a "surprisal" based weighting scheme. Prioritizing rare variants with "sensitive sites" (human conserved)

• Recurrence:

Statistics for driver identification

- BMIR (Background mutation rate) significantly varies
 & is correlated with replication timing & TADs
- Developed a variety of parametric & non-parametric methods taking this into account
- **LARVA** uses parametric beta-binomial model, explicitly modeling covariates
- <u>MOAT</u> does a variety of non-parm. shuffles (annotation, variants, &c). Useful when explicit covariates not available. Slower but speeded up w/ GPUs

Recurrence #2:

(Low-power) application to **pRCC**

- WGS finds additional facts on the canonical driver, MET. Other suggestive non-coding hotspots.
- Analysis of signatures & tumor evolution helps
 identify key mutations in different ways

Variant Annotation Tool (VAT), developed for 1000G FIG

VCF Input

Output:

- Annotated VCFs
- Graphical representations of functional impact on transcripts

Access:

- Webserver
- AWS cloud instance
- Source freely available

CLOUD APPLICATION

Graphical representation of genetic variants

vat.gersteinlab.org

Habegger L.*, Balasubramanian S.*, et al. Bioinformatics, 2012

Complexities in LOF annotation

Transcript isoforms, Isoform 1 distance to stop, Case 1 Isoform 2 functional domains, Affects only Isoform 1 protein folding, Isoform 1 etc. Reference Isoform 2 Affects both isoforms Balasubramanian S. et al., Genes Dev., '11 Balasubramanian S.*, Fu Y.* et al., NComms., '17 Isoform 1 Case 2 Isoform 2 SLC2A2 1KG ENST00000469787 ENST00000497642 HGMD ENST0000382808 ENST00000314251

Impact of a SNP on alternate splice forms

Annotation of **Loss-of-Function Transcripts (ALoFT)**

Runs on top of VAT

Output:

- Impact score: benign or deleterious.
- Decorated VCF.

0.92

Recessive

High

Input VCF file

LoF distribution varies as expected by mutation set (from healthy people v from disease)

ALoFT refines cancer mutation characterization

Vogelstein et al. '13: if >20% of mutations in gene inactivating \rightarrow tumor suppressor gene (TSG). ALoFT further refines 20/20 rule predictions.

Balasubramanian S.*, Fu Y.* et al., NComms., '17

deleterious LoFs / total mutations

Prioritizing Variants in Personal Genomes: Using functional impact & recurrence, with particular application to cancer

- Introduction
 - An individual's disease variants as the public's gateway into genomics & biology
 - The exponential scaling of data gen. & processing
 - Big-data mining to prioritize key variants as drivers
- Functional impact #1: Coding
 - **<u>ALoFT</u>**: Annotation of Loss-of-Function Transcripts.
 - Frustration as a localized metric of SNV impact.
 Differential profiles for oncogenes v. TSGs
- Functional impact #2: Non-coding
 - <u>uORFs</u>: Feature integration to find small subset of upstream mutations that potentially alter translation.
 - <u>FunSeq</u> integrates evidence, with a "surprisal" based weighting scheme. Prioritizing rare variants with "sensitive sites" (human conserved)

• Recurrence:

Statistics for driver identification

- BMIR (Background mutation rate) significantly varies
 & is correlated with replication timing & TADs
- Developed a variety of parametric & non-parametric methods taking this into account
- **LARVA** uses parametric beta-binomial model, explicitly modeling covariates
- <u>MOAT</u> does a variety of non-parm. shuffles (annotation, variants, &c). Useful when explicit covariates not available. Slower but speeded up w/ GPUs

Recurrence #2:

(Low-power) application to **pRCC**

- WGS finds additional facts on the canonical driver, MET. Other suggestive non-coding hotspots.
- Analysis of signatures & tumor evolution helps
 identify key mutations in different ways

What is localized frustration ?

Workflow for evaluating localized frustration changes (ΔF)

Complexity of the second order frustration calculation

Comparing ΔF values across different SNV categories: disease v normal

Normal mutations (1000G) tend to unfavorably frustrate (less frustrated) surface more than core, but for disease mutations (HGMD) no trend & greater changes

Comparison between ΔF distributions: TSGs v. oncogenes

SNVs in TSGs change frustration more in core than the surface, whereas those associated with oncogenes manifest the opposite pattern. This is consistent with differences in LOF v GOF mechanisms.

Prioritizing Variants in Personal Genomes: Using functional impact & recurrence, with particular application to cancer

- Introduction
 - An individual's disease variants as the public's gateway into genomics & biology
 - The exponential scaling of data gen. & processing
 - Big-data mining to prioritize key variants as drivers
- Functional impact #1: Coding
 - **<u>ALoFT</u>**: Annotation of Loss-of-Function Transcripts.
 - Frustration as a localized metric of SNV impact.
 Differential profiles for oncogenes v. TSGs
- Functional impact #2: Non-coding
 - <u>uORFs</u>: Feature integration to find small subset of upstream mutations that potentially alter translation.
 - <u>FunSeq</u> integrates evidence, with a "surprisal" based weighting scheme. Prioritizing rare variants with "sensitive sites" (human conserved)

• Recurrence:

Statistics for driver identification

- BMIR (Background mutation rate) significantly varies
 & is correlated with replication timing & TADs
- Developed a variety of parametric & non-parametric methods taking this into account
- **LARVA** uses parametric beta-binomial model, explicitly modeling covariates
- <u>MOAT</u> does a variety of non-parm. shuffles (annotation, variants, &c). Useful when explicit covariates not available. Slower but speeded up w/ GPUs

Recurrence #2:

(Low-power) application to **pRCC**

- WGS finds additional facts on the canonical driver, MET. Other suggestive non-coding hotspots.
- Analysis of signatures & tumor evolution helps
 identify key mutations in different ways

Upstream open reading frames (uORFs) regulate translation are affected by somatic mutation

- uORFs regulate the translation of downstream coding regions.
- This regulation may be altered by somatic mutation in cancer.
- In Battle et al. 2014 data uORF gain & loss assoc. protein level change.

From a "Universe" of 1.3 M pot. uORFs

The population of functional uORFs may be significant

- Ribosome profiling experiments have low overlap in identified uORFs.
- This suggests high false-negative rate, and more functional uORFs than currently known.

Prediction & validation of functional uORFs using 89 features

- All near-cognate start codons predicted.
- Cross-validation on independent ribosome profiling datasets and validation using in vivo protein levels and ribosome occupancy in humans (Battle et al. 2014).

A comprehensive catalog of functional uORFs

- Predicted functional uORFs may be intersected with disease associated variants.
- **180K**: Large predicted positive set likely to affect translation
- Calibration on gold standards, suggests getting ~70% of known

Somatic alteration of uORFs disproportionately affects certain cancers and molecular pathways

- uORF gain and loss occurs in cancer (incl. in cancer associated genes, e.g., MYC, BCL2, etc.).
- Alteration of translation may contribute to cancer.
- These changes are concentrated in certain cancers and pathways.
- Mutations leading to uORFs diff in somatic vs. germline.

Prioritizing Variants in Personal Genomes: Using functional impact & recurrence, with particular application to cancer

- Introduction
 - An individual's disease variants as the public's gateway into genomics & biology
 - The exponential scaling of data gen. & processing
 - Big-data mining to prioritize key variants as drivers
- Functional impact #1: Coding
 - **<u>ALoFT</u>**: Annotation of Loss-of-Function Transcripts.
 - Frustration as a localized metric of SNV impact.
 Differential profiles for oncogenes v. TSGs
- Functional impact #2: Non-coding
 - <u>uORFs</u>: Feature integration to find small subset of upstream mutations that potentially alter translation.
 - <u>FunSeq</u> integrates evidence, with a "surprisal" based weighting scheme. Prioritizing rare variants with "sensitive sites" (human conserved)

• Recurrence:

Statistics for driver identification

- BMIR (Background mutation rate) significantly varies
 & is correlated with replication timing & TADs
- Developed a variety of parametric & non-parametric methods taking this into account
- **LARVA** uses parametric beta-binomial model, explicitly modeling covariates
- <u>MOAT</u> does a variety of non-parm. shuffles (annotation, variants, &c). Useful when explicit covariates not available. Slower but speeded up w/ GPUs

Recurrence #2:

(Low-power) application to **pRCC**

- WGS finds additional facts on the canonical driver, MET. Other suggestive non-coding hotspots.
- Analysis of signatures & tumor evolution helps
 identify key mutations in different ways
Coding and non-coding elements may synergistically contribute to cancer

[McGillivray et al., Ann. Rev. Biomedical Data Science ('18), in press.]

Funseq: a flexible framework to determine functional impact & use this to prioritize variants

Lectures.GersteinLab.org

38

Finding "Conserved" Sites in the Human Population:

Negative selection in non-coding elements based on Production ENCODE & 1000G Phase 1

Differential selective constraints among specific sub-categories

Sub-categorization possible because of better statistics from 1000G phase 1 v pilot

~0.4% genomic coverage (~ top 25)

Sub-categorization possible because of better statistics from 1000G phase 1 v pilot

Non-coding Sensitive

Defining Sensitive non-coding Regions

Start 677 highresolution noncoding categories; Rank & find those under strongest selection

SNPs which break TF motifs are under stronger selection

- Info. theory based method (ie annotation "surprisal") for weighting consistently many genomic features
- Practical web server
- Submission of variants & precomputed large data context from uniformly processing large-scale datasets

Germline pathogenic variants show higher core scores than controls

3 controls with natural polymorphisms (allele frequency >= 1%)

- 1. Matched region: 1kb around HGMD variants
- 2. Matched TSS: matched for distance to TSS
- 3. Unmatched: randomly selected

Ritchie et al., Nature Methods, 2014

[Fu et al., GenomeBiology ('14, in revision)]

Flowchart for 1 Prostate Cancer Genome (from Berger et al. '11)

Prioritizing Variants in Personal Genomes: Using functional impact & recurrence, with particular application to cancer

- Introduction
 - An individual's disease variants as the public's gateway into genomics & biology
 - The exponential scaling of data gen. & processing
 - Big-data mining to prioritize key variants as drivers
- Functional impact #1: Coding
 - <u>ALoFT</u>: Annotation of Loss-of-Function Transcripts.
 - Frustration as a localized metric of SNV impact.
 Differential profiles for oncogenes v. TSGs
- Functional impact #2: Non-coding
 - <u>uORFs</u>: Feature integration to find small subset of upstream mutations that potentially alter translation.
 - <u>FunSeq</u> integrates evidence, with a "surprisal" based weighting scheme. Prioritizing rare variants with "sensitive sites" (human conserved)

• Recurrence:

Statistics for driver identification

- BMIR (Background mutation rate) significantly varies
 & is correlated with replication timing & TADs
- Developed a variety of parametric & non-parametric methods taking this into account
- **LARVA** uses parametric beta-binomial model, explicitly modeling covariates
- <u>MOAT</u> does a variety of non-parm. shuffles (annotation, variants, &c). Useful when explicit covariates not available. Slower but speeded up w/ GPUs

Recurrence #2:

(Low-power) application to **pRCC**

- WGS finds additional facts on the canonical driver, MET. Other suggestive non-coding hotspots.
- Analysis of signatures & tumor evolution helps
 identify key mutations in different ways

Mutation recurrence

Mutation recurrence

1 Mbp genome regions (locations chosen at random)

2 -Normalized Mutation counts 0.8 뤋 0.6 0.8 Normalized 0.6 4 o 70 20 50 60 0 10 30 Bin Index [Lochovsky et al. NAR ('15)] Chromatin remodeling failure leads to more mutations in early-replicating regions

> Variation in somatic mutations is closely associated with chromatin structure (TADs) & replication timing

[Yan et al., PLOS Comp. Bio. ('17); S. Li et al., PLOS Genetics ('17)]]

mrTADFinder:

Identifying TADs at multiple resolutions by maximizing modularity vs appropriate null

[Yan et al., PLOS Comp. Bio. ('17)]

Prioritizing Variants in Personal Genomes: Using functional impact & recurrence, with particular application to cancer

- Introduction
 - An individual's disease variants as the public's gateway into genomics & biology
 - The exponential scaling of data gen. & processing
 - Big-data mining to prioritize key variants as drivers
- Functional impact #1: Coding
 - <u>ALoFT</u>: Annotation of Loss-of-Function Transcripts.
 - Frustration as a localized metric of SNV impact.
 Differential profiles for oncogenes v. TSGs
- Functional impact #2: Non-coding
 - <u>uORFs</u>: Feature integration to find small subset of upstream mutations that potentially alter translation.
 - <u>FunSeq</u> integrates evidence, with a "surprisal" based weighting scheme. Prioritizing rare variants with "sensitive sites" (human conserved)

• Recurrence:

Statistics for driver identification

- BMIR (Background mutation rate) significantly varies
 & is correlated with replication timing & TADs
- Developed a variety of parametric & non-parametric methods taking this into account
- **LARVA** uses parametric beta-binomial model, explicitly modeling covariates
- <u>MOAT</u> does a variety of non-parm. shuffles (annotation, variants, &c). Useful when explicit covariates not available. Slower but speeded up w/ GPUs

Recurrence #2:

(Low-power) application to **pRCC**

- WGS finds additional facts on the canonical driver, MET. Other suggestive non-coding hotspots.
- Analysis of signatures & tumor evolution helps
 identify key mutations in different ways

Cancer Somatic Mutation Modeling

PARAMETRIC MODELS

Model 1: Constant Background Mutation Rate (Model from Previous Work)

 x_i : Binomial (n_i, p)

Model 2a: Varying Mutation Rate with Single Covariate Correction

- x_i : Binomial (n_i, p_i)
- $p_i: Beta(\mu|R_i,\sigma|R_i)$
- $\mu | R_i, \sigma | R_i$: constant within the same covariate rank

Model 2b: Varying Mutation Rate with Multiple Covariate Correction

- x_i : Binomial (n_i, p_i)
- $p_i : Beta(\mu | \mathbf{R}_i, \sigma | \mathbf{R}_i)$
- $\mu | \mathbf{R}_i, \sigma | \mathbf{R}_i$: constant within the same covariate rank

- Suppose there are k genome elements. For element i, define:
 - n;: total number of nucleotides
 - x_i: the number of mutations within the element
 - p: the mutation rate
 - $-R_i$: the covariate rank of the element
 - Non-parametric model is useful when covariate data is missing for the studied annotations
 - Also sidesteps issue of properly identifying and modeling every relevant covariate (possibly hundreds)

NON-PARAMETRIC MODELS

Assume constant background mutation rate in local regions.

Model 3a: Random Permutation of Input Annotations

Shuffle annotations within local region to assess background mutation rate.

Model 3b: Random Permutation of Input Variants

Shuffle variants within local region to assess background mutation rate.

[Lochovsky et al. Bioinformatics in press]

[Lochovsky et al. NAR ('15)]

MOAT-a: Annotation-based permutation

[Lochovsky et al. Bioinformatics in press]

MOAT-v: Variant-based Permutation

[Lochovsky et al. Bioinformatics in press]

MOAT-s: a variant on MOAT-v

- A somatic variant simulator
 - Given a set of input variants, shuffle to new locations, taking genome structure into account

original variantspermuted variants

...

Binning whole genome

1.000	2012-00			
			(1)	

Marking equivalence classes (bins with similar covariate vectors)

LARVA Model Comparison

- Comparison of mutation count frequency implied by the binomial model (model 1) and the beta-binomial model (model 2) relative to the empirical distribution
- The beta-binomial distribution is significantly better, especially for accurately modeling the over-dispersion of the empirical distribution

LARVA Results

MOAT: recapitulates LARVA with GPU-driven runtime scalability

Gene Name	Documented role with cancer	Pubmed ID		
SLC3A1	Cysteine transporter SLC3A1 promotes breast cancer tumorigenesis	28382174		
ADRA2B	reduce cancer cell proliferation, invasion, and migration	25026350		
SIL1	subtype-specific proteins in breast cancer	23386393		
TCF24	NA	NA		
AGAP5	significant mutation hotspots in cancer	25261935		
TMPRSS13	Type II transmembrane serine proteases in cancer and viral 1 infections			
ERO1L	Overexpression of ERO1L is Associated with Poor Prognosis of Gastric Cancer	26987398		

MOAT's high mutation burden elements recapitulate LARVA's results & published noncoding cancer-associated elements.

Computational efficiency of MOAT's NVIDIA[™] CUDA[™] version, with respect to the number of permutations, is dramatically enhanced compared to CPU version.

Number of permutations	Fold speedup of CUDA version
1k	14x
10k	100x
100k	256x

Prioritizing Variants in Personal Genomes: Using functional impact & recurrence, with particular application to cancer

- Introduction
 - An individual's disease variants as the public's gateway into genomics & biology
 - The exponential scaling of data gen. & processing
 - Big-data mining to prioritize key variants as drivers
- Functional impact #1: Coding
 - <u>ALoFT</u>: Annotation of Loss-of-Function Transcripts.
 - Frustration as a localized metric of SNV impact.
 Differential profiles for oncogenes v. TSGs
- Functional impact #2: Non-coding
 - <u>uORFs</u>: Feature integration to find small subset of upstream mutations that potentially alter translation.
 - <u>FunSeq</u> integrates evidence, with a "surprisal" based weighting scheme. Prioritizing rare variants with "sensitive sites" (human conserved)

• Recurrence:

Statistics for driver identification

- BMIR (Background mutation rate) significantly varies
 & is correlated with replication timing & TADs
- Developed a variety of parametric & non-parametric methods taking this into account
- **LARVA** uses parametric beta-binomial model, explicitly modeling covariates
- <u>MOAT</u> does a variety of non-parm. shuffles (annotation, variants, &c). Useful when explicit covariates not available. Slower but speeded up w/ GPUs

Recurrence #2:

(Low-power) application to **pRCC**

- WGS finds additional facts on the canonical driver, MET. Other suggestive non-coding hotspots.
- Analysis of signatures & tumor evolution helps
 identify key mutations in different ways

Power, as an issue in driver discovery

An (underpowered) case study: pRCC

- Kidney cancer lifetime risk of 1.6% & the papillary type (pRCC) counts for ~10% of all cases
- TCGA project sequenced 161 pRCC exomes & classified them into subtypes
 - Yet, cannot pin down the cause for a significant portion of cases....

•35 WGS of TN pairs, perhaps useful? But not that definitive from a recurrence perspective

-ectures.GersteinLab.org

65

Beyond *MET*: 2 non-coding hotspots in NEAT & ERRFI1,

supported by expr. changes & survival analysis

66 = Lectures.GersteinLab.org

Tumor Evolution: Highlight the Ordering of Key Mutations

Yates et al, NRG (2012)

Construct evolutionary trees in pRCC

- Infer mutation order and tree structure based on mutation abundance (PhyloWGS, Deshwar et al., 2015)
- Some of the key mutations occur in all the clones while others are just in some parts of the tree

[S. Li, B. Shuch and M. Gerstein PLOS Genetics ('17)]

TOGANES TO

TOGA-ED-CE25

TCGN-06-116

TOGALIEASH

TCGA45-5-67

IOF R2ns SF381 rs ଲ

(%)

30

PEXins UnClins EP30076 EUP21475

EATIS

BREITING SECTION

ROSINS NEATISC NEATISC

.

PBXtrs UNC II ns EFODINS UUP214INS FATLINE TOGANIEAS TOGANA ROF R2ns SF381 74 ଲ Mutation Populations (%) 80

TOGA-ED-CE20

TCGA-08- 116

Tree topology correlates with molecular subtypes

Mutational processes carry context-specific signatures

CpGs drive inter-patient variation in pRCC mutational spectra

- The loadings on PC1 are mostly [C>T]G
- Confirmed by higher C>T% in CpGs in the hypermethylated group (cluster1)

[S. Li, B. Shuch and M. Gerstein PLOS Genetics ('17)]

DHS mutation %

Key mutation affects mutational landscape which, in turn, affects overall burden in pRCC

 Chromatin remodeling defect ("mut") leads to more mutations in open chromatin (raw number & fraction) in those pRCC cases w/ the mutation Prioritizing Variants in Personal Genomes: Using functional impact & recurrence, with particular application to cancer

- Introduction
 - An individual's disease variants as the public's gateway into genomics & biology
 - The exponential scaling of data gen. & processing
 - Big-data mining to prioritize key variants as drivers
- Functional impact #1: Coding
 - **<u>ALoFT</u>**: Annotation of Loss-of-Function Transcripts.
 - Frustration as a localized metric of SNV impact.
 Differential profiles for oncogenes v. TSGs
- Functional impact #2: Non-coding
 - <u>uORFs</u>: Feature integration to find small subset of upstream mutations that potentially alter translation.
 - <u>FunSeq</u> integrates evidence, with a "surprisal" based weighting scheme. Prioritizing rare variants with "sensitive sites" (human conserved)

• Recurrence:

Statistics for driver identification

- BMIR (Background mutation rate) significantly varies
 & is correlated with replication timing & TADs
- Developed a variety of parametric & non-parametric methods taking this into account
- **LARVA** uses parametric beta-binomial model, explicitly modeling covariates
- <u>MOAT</u> does a variety of non-parm. shuffles (annotation, variants, &c). Useful when explicit covariates not available. Slower but speeded up w/ GPUs

Recurrence #2:

(Low-power) application to **pRCC**

- WGS finds additional facts on the canonical driver, MET. Other suggestive non-coding hotspots.
- Analysis of signatures & tumor evolution helps
 identify key mutations in different ways

Prioritizing Variants in Personal Genomes: Using functional impact & recurrence, with particular application to cancer

- Introduction
 - An individual's disease variants as the public's gateway into genomics & biology
 - The exponential scaling of data gen. & processing
 - Big-data mining to prioritize key variants as drivers
- Functional impact #1: Coding
 - **<u>ALoFT</u>**: Annotation of Loss-of-Function Transcripts.
 - Frustration as a localized metric of SNV impact.
 Differential profiles for oncogenes v. TSGs
- Functional impact #2: Non-coding
 - **<u>uORFs</u>**: Feature integration to find small subset of upstream mutations that potentially alter translation.
 - <u>FunSeq</u> integrates evidence, with a "surprisal" based weighting scheme. Prioritizing rare variants with "sensitive sites" (human conserved)

• Recurrence:

Statistics for driver identification

- **<u>BMR</u>** (Background mutation rate) significantly varies & is correlated with replication timing & TADs
- Developed a variety of parametric & non-parametric methods taking this into account
- **LARVA** uses parametric beta-binomial model, explicitly modeling covariates
- <u>MOAT</u> does a variety of non-parm. shuffles (annotation, variants, &c). Useful when explicit covariates not available. Slower but speeded up w/ GPUs

Recurrence #2:

(Low-power) application to **pRCC**

- WGS finds additional facts on the canonical driver, MET. Other suggestive non-coding hotspots.
- Analysis of signatures & tumor evolution helps identify key mutations in different ways

github.com/gersteinlab/Frustration

s Kumar, D Clarke

github.com/gersteinlab/**MrTADfinder** KK **Yan**, S Lou

VAT.gersteinlab.org L **Habegger**, S Balasubramanian, DZ Chen, E Khurana, A Sboner, A Harmanci, J Rozowsky, D Clarke, M Snyder

ALoFT.gersteinlab.org S Balasubramanian, Y Fu, M Pawashe, P McGillivray, M Jin, J Liu, K Karczewski, D MacArthur

FunSeq.gersteinlab.org Y Fu, E Khurana, Z Liu, S Lou, J Bedford, X Mu, K Yip

pRCC - S Li, B Shuch

MOAT.gersteinlab.org - L Lochovsky, J Zhang

CostSeq2 - P **Muir**, S Li, S Lou, D Wang, DJ Spakowicz, L Salichos, J Zhang, GM Weinstock, F Isaacs, J Rozowsky

LARVA.gersteinlab.org L Lochovsky, J Zhang, Y Fu, E Khurana

github.gersteinlab.org/**UORFs** P **McGillivray**, R Ault, M Pawashe, R Kitchen, S Balasubramanian

Info about this talk

No Conflicts

Unless explicitly listed here. There are no conflicts of interest relevant to the material in this talk

General PERMISSIONS

- This Presentation is copyright Mark Gerstein, Yale University, 2017.
- Please read permissions statement at

sites.gersteinlab.org/Permissions

• Basically, feel free to use slides & images in the talk with PROPER acknowledgement (via citation to relevant papers or website link). Paper references in the talk were mostly from Papers.GersteinLab.org.

PHOTOS & IMAGES

For thoughts on the source and permissions of many of the photos and clipped images in this presentation see streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be easily queried from flickr, viz: flickr.com/photos/mbgmbg/tags/kwpotppt