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Personal Genomics
as a Gateway into Biology

Personal genomes will soon become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Personal Genomics
as a Gateway into Biology

Personal genomes will soon become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Keys to genome interpretation
Relating individuals' variants to DBs

" Scaling DBs to the population

BRI R [dentifying key variants -

S separating into rare, recurrent,
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Cost per Raw Megabase of DNA Sequence

Moore's Law

The Scaling of Genomic
Data Science:

N I H National Human Genome
Research Institute

genome.gov/sequencingcosts
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Exponential Scaling Changes Fields Using Genomic Data
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7— —  Cell
NAR
— Genome Biology.
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Hardeep Nahal , 12t Scientific
ICGC Workshop (Sept 2016)

Growth of ICGC datasets Release 22

projects
ICGC Data Portal Cumulative Donor Count for Member Projects
Release 21
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Release 19 16,000
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o Release 13 10000
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Release & Release 22 (August 2016):
« 70 projects

* 19,290 donors total

* 16,236 donors w/ molecular data
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The changing costs of a sequencing pipeline

Sample collection and : Data reduction Downstream
S ;
S Experimental a experimental design B Sequencing W Data management o analyses
collection desion
100% _
Sequencing
&
o
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v
=)
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0% -
Pre-NGS Now Future
i 2000) 2010) i

From ‘00 to ~'20,

cost of DNA sequencing expt. shifts
from the actual seq. to sample
collection & analysis

[Sboner et al. (‘11), Muir et al. (‘15) Genome Biology]
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The changing costs of a sequencing pipeline

Sample collection and ; Data reduction Downstream
B perimental design B SO o 12 management I analyses

0% -
Pre-NGS Now Future
( i 2000) d

2010) \ 2020)

From ‘00 to ~'20,
cost of DNA sequencing expt. shifts
from the actual seq. to sample
collection & analysis

I Labor

3 Instrument depreciation and maintenance

[0 Reagents and supplies
[ Indirect costs

[Sboner et al. (‘11), Muir et al. (‘15) Genome Biology]

9 - Lectures.GersteinLab.org



The changing costs of a sequencing pipeline

[ Samplecollectionand & soqgncing [ Datareduction

100% _

Downstream
experimental design W Data management analyses

0% -
Pre-NGS Now
( 2000) 2010)

From ‘00 to ~'20,

cost of DNA sequencing expt. shifts
from the actual seq. to sample
collection & analysis

[Sboner et al. (‘11), Muir et al. (‘15) Genome Biology]

Alignment algorithms scaling to keep
pace with data generation
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The changing costs of a sequencing pipeline

[ Samplecollectionand & soqgncing [ Datareduction

100% _

Downstream
experimental design W Data management analyses

0% -
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From ‘00 to ~'20,

cost of DNA sequencing expt. shifts
from the actual seq. to sample
collection & analysis

[Sboner et al. (‘11), Muir et al. (‘15) Genome Biology]

Alignment algorithms scaling to keep
pace with data generation
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The changing costs of a sequencing pipeline
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Human Genetic Variation

Population of

A Cancer Genome A Typical 2,504 peoples
o Genome ° 0090
T - ) )
Origin of Variants Class of Variants

Coding Non-
coding

550 - 625K

2.1-2.5K
(20Mb)

Somatic

Prevalence of Variants

Driver (~0.1%) Rare* (1-4%) Rare (~75%)

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108
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Finding Key
Variants

Germline

« Common variants
» Can be most readily associated with phenotype (ie disease) via GWAS
» Usually their functional effect is weaker
* Many are non-coding
* Issue of LD in identifying the actual causal variant.
« Rare variants
« Associations are usually underpowered due to low frequencies but often have larger

functional impact
» Can be collapsed in the same element to gain statistical power (burden tests).

14 - Lectures.GersteinLab.org
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Finding Key
Variants

Somatic

e Overall

* Often these can be thought of as very rare variants

* Drivers

* Driver mutation is a mutation that directly or indirectly confers a selective growth
advantage to the cell in which it occurs.
* A typical tumor contains 2-8 drivers; the remaining mutations are passengers.

* Passengers

* Conceptually, a passenger mutation has no direct or indirect effect on the
selective growth advantage of the cell in which it occurred.

Vogelstein B. Science 2013. 339(6127):1546-1558
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Prioritizing Variants in Personal Genomes: Using functional
impact & recurrence, with particular application to cancer

* |ntroduction .

An individual's disease variants as
the public's gateway into genomics & biology

The exponential scaling of data gen. & processing

Big-data mining to prioritize key variants as drivers

* Functional impact #1: Coding

ALOFT: Annotation of Loss-of-Function Transcripts.

Frustration as a localized metric of SNV impact.
Differential profiles for oncogenes v. TSGs

» Functional impact #2: Non-coding

uORFs: Feature integration to find small subset of
upstream mutations that potentially alter translation

FunSeq integrates evidence,

with a “surprisal” based weighting scheme.
Prioritizing rare variants with “sensitive sites”
(human conserved)

Recurrence:
Statistics for driver identification

BMR (Background mutation rate) significantly varies
& is correlated with replication timing & TADs

Developed a variety of parametric & non-parametric
methods taking this into account

LARVA uses parametric beta-binomial model,
explicitly modeling covariates

MOAT does a variety of non-parm. shuffles
(annotation, variants, &c). Useful when explicit
covariates not available. Slower

but speeded up w/ GPUs

Recurrence #2:
(Low-power) application to pPRCC

WGS finds additional facts on the canonical driver,
MET. Other suggestive non-coding hotspots.

Analysis of signatures & tumor evolution helps
identify key mutations in different ways



Prioritizing Variants in Personal Genomes: Using functional
impact & recurrence, with particular application to cancer

* |ntroduction .

An individual's disease variants as
the public's gateway into genomics & biology

The exponential scaling of data gen. & processing

Big-data mining to prioritize key variants as drivers

» Functional impact #1: Coding

ALOFT: Annotation of Loss-of-Function Transcripts.

Frustration as a localized metric of SNV impact.
Differential profiles for oncogenes v. TSGs

» Functional impact #2: Non-coding

UORFs: Feature integration to find small subset of
upstream mutations that potentially alter translation,

FunSeq integrates evidence,

with a “surprisal” based weighting scheme.
Prioritizing rare variants with “sensitive sites”
(human conserved)

Recurrence:
Statistics for driver identification

BMR (Background mutation rate) significantly varies
& is correlated with replication timing & TADs

Developed a variety of parametric & non-parametric
methods taking this into account

LARVA uses parametric beta-binomial model,
explicitly modeling covariates

MOAT does a variety of non-parm. shuffles
(annotation, variants, &c). Useful when explicit
covariates not available. Slower

but speeded up w/ GPUs

Recurrence #2:
(Low-power) application to pRCC

WGS finds additional facts on the canonical driver,
MET. Other suggestive non-coding hotspots.

Analysis of signatures & tumor evolution helps
identify key mutations in different ways



Variant Annotation Tool (VAT), developed for 1000G FIG

VCF Input

Output:

« Annotated VCFs

- Graphical representations of
functional impact on
transcripts

Access:

«  Webserver

«  AWS cloud instance
- Source freely available

Virtual Machine (VM) | 3 disabled Scalable VAT User
Web Server / EC2 Instance / Local Disk Cloud Service I
VAT 1/0 | S3enabled VM i
Executables Layer '\:\ Input /'i_________J
I I Bucket T
1 VM2 Master
VAT Web Application | | Output \1‘_‘_‘_‘_‘_‘_‘_‘_:
Public HTML / API | Bucket {  VMn e
__________________________ J L

CLOUD APPLICATION

Graphical representation of genetic variants

| I I —
-

RN
| oy |
L |

.

vat.gersteinlab.org

Habegger L.", Balasubramanian S.”, et al. Bioinformatics, 2012
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Complexities in LOF annotation

Impact of a SNP on alternate splice forms

— = Isoform 1
— T, - (soform 2

TAﬂecls only Isoform 1

Transcript isoforms,

distance to stop, Case 1
functional domains,

protein folding,

Isoform 1
etc. Reference
_- Isoform 2

Balasubramanian S. et al., Genes Dev., '11 l‘“‘ws both isoforms
Balasubramanian S.*, FuY.* et al.,, NComms., '17
Case 2 : Isoform 1
—- Isoform 2
SLC2A2 ¢
1KG ENSTO00000469787 m—mms -
— 1

ENST00000497642 m—— NN —m 1
HGMD H— L |

S Ve '

ENSTO00000314251
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Annotation of
Loss-of-Function
Transcripts (ALoFT)

Runs on top of VAT
Output:

e |mpact score: benign or deleterious.

e Decorated VCF.

Balasubramanian S.*, FuY.* et al.,, NCommes., 17

Input
VCF file

!

Annotate pLoF variants
with variant and transcript specific features

Mismapping )—

Segmental duplication;

pseudogene; paralog

Annotation Issue

Non-canonical splice site;
LoF position...

( Functional )

NMD prediction; Loss of functional, structural
domains, disordered regions, post translational
modification sites; gene expression in GTex...

(  Conservation )

GERP score; dN/dS; 1000G, ESP6500 allele
frequency; heterozygosity of genes...

Y
( Network )

Shortest path to disease genes; network

centralities...

Pathogenicity prediction

Prediction model

trained on benign, dominant and recessive
disease-causing premature stop mutations

|

Output
Annotated features for pLoFs
3 pathogenicity scores for premature stop and frameshift variants

€.9-chr pos ref alt effect gene dominant benign i ion C
1866453 C T prematureStop SAMD11 0.02 0.06 0.92 Recessive High
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LoF distribution varies as expected
by mutation set (from healthy people v from disease)

pLoF variant fraction

= 1KG (AF < 1%) Fraction of variants
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ALOFT identifies deleterious
somatic LoF variants

Cancer genes:
« COSMIC consensus:
e Enriched in deleterious LoFs.

LoF tolerant genes:
* LoF in the 1KG cohort. . -
» Depleted in deleterious LoFs.

Balasubramanian S.*, FuY.* et al.,, NComms.,’17

cancer genes vs. LoF tolerant genes

—8— 504 cancer genes -e— 387 LoF-tolerant genes
—o— 504 random genes —e— 387 random genes

14
!

60
—9

variants in gene sets

percentage pf somatic pL

0 01 02 03 04 05 06 07 08 09 1

1-benign ALOFT score
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ALOFT refines cancer
mutation characterization

20/20 rule ALOFT stratification

(-]
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1

10
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percent deleterious LoFs
20

o - o
T

TSG non-TSG

Vogelstein et al. '13: if >20% of mutations in gene
inactivating - tumor suppressor gene (TSG).

ALOFT further refines 20/20 rule predictions.

Balasubramanian S.*, FuY.* et al., NComms.,'17

ratio of deleterious LoFs to
total non-silent mutations (%)

ratio of deleterious LoFs to
total pLoF mutations (%)

deleterious LoFs / total mutations
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Prioritizing Variants in Personal Genomes: Using functional
impact & recurrence, with particular application to cancer

* |ntroduction .

An individual's disease variants as
the public's gateway into genomics & biology

The exponential scaling of data gen. & processing

Big-data mining to prioritize key variants as drivers

» Functional impact #1: Coding

ALOFT: Annotation of Loss-of-Function Transcripts.

Frustration as a localized metric of SNV impact.
Differential profiles for oncogenes v. TSGs

» Functional impact #2: Non-coding

UORFs: Feature integration to find small subset of
upstream mutations that potentially alter translation,

FunSeq integrates evidence,

with a “surprisal” based weighting scheme.
Prioritizing rare variants with “sensitive sites”
(human conserved)

Recurrence:
Statistics for driver identification

BMR (Background mutation rate) significantly varies
& is correlated with replication timing & TADs

Developed a variety of parametric & non-parametric
methods taking this into account

LARVA uses parametric beta-binomial model,
explicitly modeling covariates

MOAT does a variety of non-parm. shuffles
(annotation, variants, &c). Useful when explicit
covariates not available. Slower

but speeded up w/ GPUs

Recurrence #2:
(Low-power) application to pRCC

WGS finds additional facts on the canonical driver,
MET. Other suggestive non-coding hotspots.

Analysis of signatures & tumor evolution helps
identify key mutations in different ways
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[Ferreiro et al., PNAS ('07)]
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Workflow for evaluating localized frustration changes (AF)
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Complexity of the second order
erlstration calculation

MD-assisted free energy calculation (AG)

Second order frustration calculation (AF)

SWT L,

First order frustration calculation (F)

Accuracy
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[Kumar et al, NAR (2016)]

Comparing AF values across different
SNV categories: disease v normal

Loss of N N A
stration
o o -
-~
)
Gain of ¥ < 4
.Aslra(ion i

1KG EXAC HGMD 1KG EXAC HGMD
Core residues Surface residues

Normal mutations (1000G) tend to unfavorably
frustrate (less frustrated) surface more than core,
but for disease mutations (HGMD)

no trend & greater changes
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[Kumar et al, NAR (2016)]

Comparison between AF
distributions: TSGs v. oncogenes

A TSG Drivers B Oncogene Drivers
. R
< I wo
<
] - R
® i, _
T A ¥ -

core surface core surface

C
> &
m

SNVs in TSGs change frustration more in core than the surface, whereas those associated with oncogenes manifest the
opposite pattern. This is consistent with differences in LOF v GOF mechanisms.
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Prioritizing Variants in Personal Genomes: Using functional
impact & recurrence, with particular application to cancer

* |ntroduction .

An individual's disease variants as
the public's gateway into genomics & biology

The exponential scaling of data gen. & processing

Big-data mining to prioritize key variants as drivers
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Differential profiles for oncogenes v. TSGs

» Functional impact #2: Non-coding

UORFs: Feature integration to find small subset of
upstream mutations that potentially alter translation,

FunSeq integrates evidence,

with a “surprisal” based weighting scheme.
Prioritizing rare variants with “sensitive sites”
(human conserved)

Recurrence:
Statistics for driver identification

BMR (Background mutation rate) significantly varies
& is correlated with replication timing & TADs

Developed a variety of parametric & non-parametric
methods taking this into account

LARVA uses parametric beta-binomial model,
explicitly modeling covariates

MOAT does a variety of non-parm. shuffles
(annotation, variants, &c). Useful when explicit
covariates not available. Slower

but speeded up w/ GPUs

Recurrence #2:
(Low-power) application to pRCC

WGS finds additional facts on the canonical driver,
MET. Other suggestive non-coding hotspots.

Analysis of signatures & tumor evolution helps
identify key mutations in different ways



Upstream open reading frames (UORFs) regulate
translation are affected by somatic mutation

A cDS [0 overlap [  uORF [] e uORFs regulate the translation of downstream
coding regions.
S B e —3 e This regulation may be altered by somatic
5 — | — 3 mutation in cancer.
o .
5 | T In Battle et a_I. 2014 data uORF gain & loss
assoc. protein level change.
B O uORF gain
UORF &0 O uORF loss
translation g
5'- ATG | H{ATG | - 3 =) T T —
g é é = = B o B
suppression A translation henotype F>)
5'176G | L ATG | - 3 {giseaseytE)isk 2 0 i H‘.’ THH-HH U
cancer [=
9
o
o
[McGillivray et al., NAR (‘18)] A
10 11 12 13 14 15 16 17 18 19 20
# study subjects increasing power
I
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ribosome profilng labeled uORFs

From a “Universe” of
1.3 M pot. uORFs

The population of functional
uORFs may be significant

functional uORFs
population size unknown

ribosome profiling labeled uORFs
known population size

high false negative rate

high false positive rate

all uORFs

&

all uORFs

Ribosome profiling experiments have
low overlap in identified uORFs.

This suggests high false-negative rate,
and more functional uUORFs than

currently known.

[McGillivray et al., NAR (‘18)]
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Prediction & validation of R T .

1
. . v 3 |-
functional uORFs using 89 features (S e v | = cor
| train classifier | 4’ g’_ \“I p .
7 Fop Level
| score+uORFs I —8‘75 [
e All near-cognate start codons predicted. [ threshoia e | Srex tissue entropy
. . . . neéative UOR ositive UORFs [ ]
e Cross-validation on independent ribosome #' 7 '
profiling datasets and validation using in vivo [ voidaton ] Tissue
protein levels and ribosome occupancy in 0 0183 0a 0s ||, Dist.
<
humans (Battle et al. 2014). Q@i&: 0
o[
QO;:?Z;\\Q"L::: ‘: # intern:zl ATG (start) codons
Q;&\ '1/\\ Q,($ i 4
_ training  validation ROC OQQ'*Q;}OQ&@”QZ o°boo_:| 23 Int-
5 | & o LEl A\ A
g oo j (e S C e S L) ATG o
N SSiiien - F& £ S T g o
g ] Dintersection (Gao, °0/\‘</+ f\é\o & 0&&— e Start o
= 03 O S ) I 0 «
e w0 T Tttt 0060,;;\‘\@ o° ¥ <,°b°6_:| =
=, 021 @@"} %\&@i\v{& @Q@ °b°° -: ©
Q 0.1 o o S = 1 @
?',' h @ AUC 0.82 \@‘i@ /\o@%\:oe I S » O O
& 0.0d T I A e NSNS & & _: L a0 < "(-5' g
VOOOEILR0Y T S S 8 QS 5
EOLESRRS2Y @ xki\"’&a&eé&oé&-:l 55 &) qh, -g
start codon — x S ) mm— 9
& -
S
FPR & o2 ™M
[McGillivray et al., NAR (‘18)] %\o@@vc’ ™



A comprehensive catalog of functional uORFs

Epositive score
60‘ 2-voted positive | ”
0 | I e |

Onegative score

total predicted positive
1.8X10°

unlabeled _ Opredicted positive
8x10% §
Universe of 1 -3M & ] [”H“h @ @ @
o i
UORFs scored via £ 0 — AN : 1-voted positive
Fritsch Lee Gao
40 20 L 20 70% 71% 72%

1746/2485 1228/1738 705/976

#UORFs

Simple Bayes algo.

| sl

e 180K. Large predicted positive set
e Predicted functional uORFs may be intersected likely to affect translation
with disease associated variants. ) ,
Calibration on gold standards,
suggests getting ~70% of known

[McGillivray et al., NAR (“18)]
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]

0 1
normalized
frequency

certain cancers and molecular pathways

e UuORF gain and loss occurs in cancer (incl. in cancer associated genes, e.g., MYC, BCL2, etc.).

e Alteration of translation may contribute to cancer.
e These changes are concentrated in certain cancers and pathways.
e Mutations leading to uORFs diff in somatic vs. germline.
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ATG c ATG
cTG 3 || B cTG H
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[McGillivray et al., NAR (‘18)]
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WGS finds additional facts on the canonical driver,
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Coding and non-coding elements may synergistically contribute to
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[McGillivray et al., Ann. Rev. Biomedical Data Science (‘18), in press.]
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Funseq: a flexible framework to determine

functional impact & use this to prioritize variants

Annotation (tf binding
sites open chromatin,
ncRNAs) & Chromatin

Dynamics

Conservation
(GERP, allele freq.)

Mutational impact
(motif breaking, Lof)

Network (centrality
position)

® SNV 1 Indel

Non-coding annotation

)_._..

Degree of negative selection

Motif disruptive score

breaking | | |
| | | ) .
[ |
| | | | Degree of network centrality
- ) —-
| S—
Enhancer/

Promoter [ |

, Khurana et al., Science ('13)]

[Fu et al., GenomeBiology ('14),
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Finding "Conserved” Sites in the Human Population:

Negative selection in non-coding elements based on
Production ENCODE & 1000G Phase 1
Broad Categories
Coding !

Genomic Avg i

ennancer [N Broad categories of

(Non-coding RNA) ne , regulatory regions under
(DNase | hypersensitive sites) DHS ' negative SEIECtion
(TFSS: Sequence-specific TFs) Related to:
(Transcription factor binding sites) TFBS ENCODE, Nature, 2012
e gt i o

Pseudogene — ,
]

| | § T | | ]
056 058 060 062 064 066 0.68

Fraction of rare SNPs

Depletion of Common Variants
in the Human Population
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A Broad Categories B
GenomicAvg 27M SNPs |

TFBS

Synonymous | 0.12M

Differential
selective
Specific Categories CO n stra i n ts

TF Families (motifs) n gom
Coding ' 0.27M . B Coding . H a m o n g s pe c Ifl c
> i
Missense | 0.15M . N Fork::‘act: =
oz/P°

—— - sub-categories

NR

Homeodomain®
Enhancer 1Y

General 1Y)
Chromatin ¥4

' 050 055 060 065 0.70
Pseudogene | 57K —
4 :

0.56 06 0.64 0.68 072
Fraction of rare SNPs

Sub-categorization possible
because of better statistics from
1000G phase 1 v pilot

[Khurana et al., Science (‘13)]
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e VB A A S A

0.56 06 0.64 0.68 0.72
Fraction of rare SNPs

A Broad Categories B
GenomicAvg 27M SNPs |

Specific Categories

TF Families (motifs)
Coding  0.27M L H

' Coding ' H
’ > : HMG
Missense | 0.15M . N Forkhead =
! oz/P°
Synonymous | 0.12M : — staT IS

UTR H MADs-box”
’ NR®
Homeodomain®
Ehencer g I
e H
DHS| 4. 3

TFSS 8

TFBS

General [l0X

Chromatin r T t T 1
0.50 0.55 060 0.65 0.70

Pseudogene '
P -
0.56 06 0.64 0.68 072

Fraction of rare SNPs

Sub-categorization possible
because of better statistics from
1000G phase 1 v pilot

~0.4% genomic coverage (~ top 25)
~0.02% genomic coverage (top 5)

Defining
Sensitive
non-coding
Regions
start © 7 7 high-

resolution non-
coding categories;
Rank & find those
under strongest
selection

[Khurana et al., Science (‘13)]
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SNPs which break TF motifs are under stronger selection

A Broad Categories
Genomic Avg  27M SNPs

Coding 0.27M

D
Missense | 0.15M
Synonymous | 0.12M

UTR| 0.4M

Enhancer

DHS

TFSS

General

TFBS

Chromatin

Pseudogene
4

Specific Categories

TF Families (motifs)
Coding

Homeodomain®

ps” I
iprmic’ -

0.56 0.6 0.64 0.68
Fraction of rare SNPs

SNPs Conserving vs. motifs

Forkhead
] iy

T 1 1 1T 1T 1
0.0 0.2 0.4 0.6

Forkhead motif Motif breaking SNP
T chr1: 98,100,579
2.0
1.0
001=L ~=_U1 Lo
5 10 15

2 s

—r 1 T 1T 1T 1
0.0 0.2 0.4 0.6

AP-2 motif T Motif breaking SNP
20 chr14: 99,849,316

1.0-
0ole sWVc..SXVC= =x
5

[Khurana et al., Science (‘13)]
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HOT region s

F u n Se q .gersteinlab.org Sensitive region

Polymorphisms

I
5 Genome - .
!

wa = 1 + palogapa + (1 = pa)logs (1 = pya)

Info. theory based method (ie
annotation “surprisal”) for weighting
consistently many genomic features

* Practical web server
« Submission of variants & pre-

# Note: This online web server s based on Funseq2
10,

I | e computed large data context from
= T g uniformly processing large-scale
5 e datasets

[Fu et al., GenomeBiology ('14)]
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Germline pathogenic variants show

higher core scores than controls

o — -
unmatched: 0.86
o |
< - o
3
©
x o |
™ - [0 o
2
:'ﬁ
o < |
N o o
[0}
2
_ I F oo
- ’ I I l 8
o ! ¥ o |
© T T T T T T
HGMD Matched region  Matched TSS Unmatched
regulatory (1,527)  (4,258) (13,861) (144,086) 0.0 0.2 0.4 06 0.8 1.0

False Positive Rate

3 controls with natural polymorphisms (allele frequency >= 1% )

Ritchie et al.,

1. Matched region: 1kb around HGMD variants
2. Matched TSS: matched for distance to TSS

3. Unmatched: randomly selected
Nature Methods, 2014 [Fu et al., GenomeBiology (14, in revision)]
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Prostate
cancer

1000 Genomes
Screen

[
Functional
annotation

1829 somatic SNVs

Found in 1000 Genomes ?

1829 somatic SNVs

( Found in 1000 Genomes ?)

in
( ultra-sensitive region 2 )

v\
b. Disruptive

z

/\

]

(Target gene known

") (Target gene known

(o

W
L

n?)  (Targetgeneisahub?)

N/ \Y
V. [ ]
Network L 1
connectivity
(Targetgene is
N
V.
Recurrence

Candidate drivers

vl ]
r

Target gene known ?

Unlikely to
be driver

Flowchart for 1 Prostate Cancer
Genome (from Berger et al. '11)

[Khurana et al., Science (‘13)]
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Prioritizing Variants in Personal Genomes: Using functional
impact & recurrence, with particular application to cancer

* |ntroduction .

An individual's disease variants as
the public's gateway into genomics & biology

The exponential scaling of data gen. & processing

Big-data mining to prioritize key variants as drivers

» Functional impact #1: Coding

ALOFT: Annotation of Loss-of-Function Transcripts.

Frustration as a localized metric of SNV impact.
Differential profiles for oncogenes v. TSGs

» Functional impact #2: Non-coding

UORFs: Feature integration to find small subset of
upstream mutations that potentially alter translation,

FunSeq integrates evidence,

with a “surprisal” based weighting scheme.
Prioritizing rare variants with “sensitive sites”
(human conserved)

Recurrence:
Statistics for driver identification

BMR (Background mutation rate) significantly varies
& is correlated with replication timing & TADs

Developed a variety of parametric & non-parametric
methods taking this into account

LARVA uses parametric beta-binomial model,
explicitly modeling covariates

MOAT does a variety of non-parm. shuffles
(annotation, variants, &c). Useful when explicit
covariates not available. Slower

but speeded up w/ GPUs

Recurrence #2:
(Low-power) application to pRCC

WGS finds additional facts on the canonical driver,
MET. Other suggestive non-coding hotspots.

Analysis of signatures & tumor evolution helps
identify key mutations in different ways



Mutation recurrence
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Cancer Type 1

Cancer Type 2

Cancer Type 3
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mutation load (standardized)

25

1

Replication timing

i

1

1

-1.5
-600000

[Yan et al.,, PLOS Comp. Bio. (‘17); S. Li et al., PLOS Genetics (‘17)] ]

-400000

-200000
genomic distance from the TAD boundary

bouﬁdary

200000

400000

600000

1.2

1

08

Normalized Mutafion counts

0.6

1.6

’_J
1
J
]
— =
L
1.4

1.2

1 .
Normalized replication timing

04 06 0.8

| ' ] | L] L] 1 I

0 10 20 30 40 50 60 70
Bin Index [Lochovsky et al. NAR (‘15)]

Chromatin remodeling failure leads to more mutations in
early-replicating regions

Variation in somatic mutations
is closely associated with
chromatin structure (TADs) &
replication timing

52 - Lectures.GersteinLab.org



input: contact map W null model E
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mrTADFinder:

Identifying TADs at multiple
resolutions by maximizing
modularity

i ch ticular resoluti
VS approprlate null \ooseapar icular resolution y ry

L]

Optimize Q over all possible partitio

1
Q= ﬁ Z(VVU — 'YEz‘j)(So,»a,- y: resolution parameter
1J

Multiple runs to define boundary scores
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‘ ©

i o

22.0 240 260 280 300 320 340 36.0 consensus boundaries based on &

. . : : : ' B the boundary scores =

f

y=2.5 §
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: consensus TADs output 5

g
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1
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Prioritizing Variants in Personal Genomes: Using functional
impact & recurrence, with particular application to cancer

* |ntroduction .

An individual's disease variants as
the public's gateway into genomics & biology

The exponential scaling of data gen. & processing

Big-data mining to prioritize key variants as drivers

» Functional impact #1: Coding

ALOFT: Annotation of Loss-of-Function Transcripts.

Frustration as a localized metric of SNV impact.
Differential profiles for oncogenes v. TSGs

» Functional impact #2: Non-coding

UORFs: Feature integration to find small subset of
upstream mutations that potentially alter translation,

FunSeq integrates evidence,

with a “surprisal” based weighting scheme.
Prioritizing rare variants with “sensitive sites”
(human conserved)

Recurrence:
Statistics for driver identification

BMR (Background mutation rate) significantly varies
& is correlated with replication timing & TADs

Developed a variety of parametric & non-parametric
methods taking this into account

LARVA uses parametric beta-binomial model,
explicitly modeling covariates

MOAT does a variety of non-parm. shuffles
(annotation, variants, &c). Useful when explicit
covariates not available. Slower

but speeded up w/ GPUs

Recurrence #2:
(Low-power) application to pRCC

WGS finds additional facts on the canonical driver,
MET. Other suggestive non-coding hotspots.

Analysis of signatures & tumor evolution helps
identify key mutations in different ways



Cancer Somatic Mutation Modeling

PARAMETRIC MODELS

» Suppose there are k genome

Model 1: Constant Background
Mutation Rate (Model from
Previous Work)

x; * Binomial(n;,p)

elements. For element i, define:
— n;: total number of nucleotides

— x;: the number of mutations within the
element

Model 2a: Varying Mutation Rate
with Single Covariate Correction

x; + Binomial(n;,p;)

pi: Beta(/,t|Ri,a|Ri)

u|RL-, O'lRL' : constant within the same
covariate rank

— p: the mutation rate
— Ry the covariate rank of the element

» Non-parametric model is useful
when covariate data is missing for
the studied annotations

+ Also sidesteps issue of properly

Model 2b: Varying Mutation Rate
with Multiple Covariate Correction
x; + Binomial(n;,p;)

Di Beta(u|Ri,a|R,-)

,u|Rl-, 0|Rl~ : constant within the same
covariate rank

identifying and modeling every
relevant covariate
(possibly hundreds)

[Lochovsky et al. NAR (15)]

Assume constant background
mutation rate in local regions.

Model 3a: Random
Permutation of Input

Annotations
Shuffle annotations within local

region to assess background
mutation rate.

Model 3b: Random
Permutation of Input Variants

Shuffle variants within local
region to assess background
mutation rate.

[Lochovsky et al. Bioinformatics in press]
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MOAT-a: Annotation-based permutation
annotation

permutations

| = original variants

< P

- - . -] - -] - = - —

.

[Lochovsky et al. Bioinformatics in press]
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MOAT-v: Variant-based Permutation
—— annotation

Can preserve tri-nt context in shuffle | = original variants

permuted variants
bin width W

r———— —

R ———

R (R — R —————

[Lochovsky et al. Bioinformatics in press]
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MOAT-s: a variant on MOAT-v

* A somatic variant simulator

« Given q[set of input variants, shuffle to new locations, taking genome structure into
accoun
I

original variants
= permuted variants

Binning whole genome
I | I | I | | I |

Marking equivalence classes (bins with similar covariate vectors)

Overlaying variants (with tri-nucleotide indexing)
I | I | | | | | | ee

: - 2. 2 333 33 4444444 55 6 7
Shuffling variants T ET T :
| S N SN N1 IR S L '
3 5 4 43 3444343 4 2 6 5 7
443

[Lochovsky et al. Bioinformatics in press]
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LARVA Model Comparison

« Comparison of mutation count frequency implied by the binomial model (model 1) and the
beta-binomial model (model 2) relative to the empirical distribution

» The beta-binomial distribution is significantly better, especially for accurately modeling
the over-dispersion of the empirical distribution

—6— empirical
@ | beta—binomial
S /o‘°°\ —e— binomial
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o q \
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mutation counts

[Lochovsky et al. NAR (*15)]
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LARVA Results

TSS LARVA results
0
@ PRRC2B g
¢ g
oTP53<k\\\\\\\\\ S
§ %1 These have 2
5 . literature-verified '
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g o o AGAP5,PROZ ‘Ej
= TERT L
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- —

noncoding annotation
p-values in sorted order

[Lochovsky et al. NAR ('15)]
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MOAT: recapitulates LARVA
with GPU-driven runtime scalability

Computational efficiency of MOAT's
NVIDIA™ CUDA™ version, with

SLC3Al Cysteine transporter SLC3Al promotes breast cancer 28382174

tumorigenesis \
ADRA2B reduce cancer cell proliferation, invasion, and migration 25026350 res peCt tO th e num be r Of pel"m UtatIOHS y
SIL1 subtype-specific proteins in breast cancer 23386393 : :
TCF24 | NA NA is dramatically enhanced compared to
AGAPS significant mutation hotspots in cancer 25261935 i
TMPRSS13  Type II transmembrane serine proteases in cancer and viral 19581128 C P U version.

infections

EROIL Overexpression of EROI1L is Associated with Poor Prognosis 26987398
of Gastric Cancer Number of Fold speedup of
. permutations CUDA version
MOAT’s high mutation burden elements 1k 14x

recapitulate LARVA's results & published 10k 100x
noncoding cancer-associated elements.
100k 256X
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Prioritizing Variants in Personal Genomes: Using functional
impact & recurrence, with particular application to cancer

* |ntroduction .

An individual's disease variants as
the public's gateway into genomics & biology

The exponential scaling of data gen. & processing

Big-data mining to prioritize key variants as drivers

» Functional impact #1: Coding

ALOFT: Annotation of Loss-of-Function Transcripts.

Frustration as a localized metric of SNV impact.
Differential profiles for oncogenes v. TSGs

» Functional impact #2: Non-coding

UORFs: Feature integration to find small subset of
upstream mutations that potentially alter translation,

FunSeq integrates evidence,

with a “surprisal” based weighting scheme.
Prioritizing rare variants with “sensitive sites”
(human conserved)

Recurrence:
Statistics for driver identification

BMR (Background mutation rate) significantly varies
& is correlated with replication timing & TADs

Developed a variety of parametric & non-parametric
methods taking this into account

LARVA uses parametric beta-binomial model,
explicitly modeling covariates

MOAT does a variety of non-parm. shuffles
(annotation, variants, &c). Useful when explicit
covariates not available. Slower

but speeded up w/ GPUs

Recurrence #2:
(Low-power) application to pRCC

WGS finds additional facts on the canonical driver,
MET. Other suggestive non-coding hotspots.

Analysis of signatures & tumor evolution helps
identify key mutations in different ways



Power (%)

Power, as an issue in driver discovery

0 200 400 600 800 1,000
Sample size

25,000 promoters

650-bp Binding
promoter site

—{ -y - {8— Rheinbay et al.

100,000 promoters
— DS A iy AR

25,000 promoters Better

annotation or
large number
450-bp of samples
promoter could help.

[Kumar & Gerstein, Nature ('17)]
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An (underpowered)
case study: pRCC

» Kidney cancer lifetime risk of 1.6% &
the papillary type (pRCC) counts for
~10% of all cases

« TCGA project sequenced 161 pRCC

exomes & classified them into
subtypes

— Yet, cannot pin down the cause for a
significant portion of cases....

*35 WGS of TN pairs,
perhaps useful? But not that definitive
from a recurrence perspective

[Cancer Genome Atlas Research Network N Engl J Med. (‘16) ]

(CIMP) !
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microRNA 1

Copy number 2
mRNA 1

DNA methylation 2
mRNA 2

DNA methylation 1
Copy number 1
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microRNA 4
mRNA 3

Histologic Type
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9|22|
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‘MET is long known pRCC driver
‘In MET, TCGA found somatic SNVs, dup-
lications & an alt. splicing event as drivers 3/161).

*In addition, from 35 WGS we found
—A noncoding hotspot associated with MET
—Lack of SVs & breakpoints disrupting MET
—Germline SNP (rs11762213) predicts survival

in type 2 patients

Tyr-Kinase
MET:

Known Facts
& New Results

B
A MET
Non:(:g%lq% ;»(on C&ﬂ?r?\lﬁg)v @ Proposed promoter Retrotransposon - p <0.034
. Noncodin Proposed regulatory
Coding exon . SNV 9 O regions :
116339283 (rs11762213) 2 o | :
3 ° :
= :
[ had bt bR LR -+
116312044 116324318 |116342376 116352009 - %
-_— e
116336619 a ©
16343120 116354616 A/\Iﬂ
N
chr7 T I > ° — GG
116,310,000 116,350,000 L1PA2 116.370,000| ---- GA
Noncoding exon exon2 SINE: MIR exon3 .
g
r T T 1
0 1000 2000 3000

Time(days)

[A. Gentile, L.
Trusolino and PM.
Comoglio, Cancer
and Metastasis
Reviews (‘08); S. Li,
B. Shuch and M.
Gerstein PLOS
Genetics (‘17)]
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©
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D
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(NEAT1) region >
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hr11
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Beyond
MET: 2
non-coding
hotspots in
NEAT &
ERRFI1,

supported
by expr.
changes &
survival
analysis

[Li et al. PLOS Genetics (‘17)]
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Tumor Evolution: Highlight the Ordering of Key Mutations

+ Driver mutations

Time point X:
diagnosis and
treatment initiation

A

Distant
metastasis

Time point Y:
distant and
local relapse

Yates et al, NRG (2012)

Time

>
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Construct evolutionary trees in pRCC

« Infer mutation order and tree structure based on mutation
abundance (PhyloWGS, Deshwar et al., 2015)

-  Some of the key mutations occur in all the clones while others
are just in some parts of the tree

DNMT3A: premature stop KDME6A: missense
NEATT: noncoding
SMARCA4: missense

0.2 Mutation
e distance

Germline

Population
(%)

Mutation

[S. Li, B. Shuch and M. Gerstein PLOS Genetics (‘17)]
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Tree topology correlates with molecular subtypes
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Mutational processes carry context-specific signatures
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Mutations per million
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Total mutation counts
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mutational landscape

which, in turn, affects
overall burden in pRCC

« Chromatin remodeling
defect (“mut”) leads to
more mutations in
open chromatin (raw
number & fraction) in
those pRCC cases w/
the mutation
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Prioritizing Variants in Personal Genomes: Using functional
impact & recurrence, with particular application to cancer

* |ntroduction .

An individual's disease variants as
the public's gateway into genomics & biology

The exponential scaling of data gen. & processing

Big-data mining to prioritize key variants as drivers

» Functional impact #1: Coding

ALOFT: Annotation of Loss-of-Function Transcripts.

Frustration as a localized metric of SNV impact.
Differential profiles for oncogenes v. TSGs

» Functional impact #2: Non-coding

UORFs: Feature integration to find small subset of
upstream mutations that potentially alter translation,

FunSeq integrates evidence,

with a “surprisal” based weighting scheme.
Prioritizing rare variants with “sensitive sites”
(human conserved)

Recurrence:
Statistics for driver identification

BMR (Background mutation rate) significantly varies
& is correlated with replication timing & TADs

Developed a variety of parametric & non-parametric
methods taking this into account

LARVA uses parametric beta-binomial model,
explicitly modeling covariates

MOAT does a variety of non-parm. shuffles
(annotation, variants, &c). Useful when explicit
covariates not available. Slower

but speeded up w/ GPUs

Recurrence #2:
(Low-power) application to pRCC

WGS finds additional facts on the canonical driver,
MET. Other suggestive non-coding hotspots.

Analysis of signatures & tumor evolution helps
identify key mutations in different ways
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Info about this talk
No Conflicts

Unless explicitly listed here. There are no conflicts of interest relevant to the material in this talk

General PERMISSIONS

This Presentation is copyright Mark Gerstein, Yale University, 2017.
. Please read permissions statement at

sites.gersteinlab.org/Permissions

«  Basically, feel free to use slides & images in the talk with PROPER acknowledgement (via
citation to relevant papers or website link). Paper references in the talk were mostly from
Papers.GersteinLab.org.

PHOTOS & IMAGES

For thoughts on the source and permissions of many of the photos and clipped images in this
presentation see streams.gerstein.info . In particular, many of the images have particular EXIF
tags, such as kwpotppt , that can be easily queried from flickr, viz:
flickr.com/photos/mbgmbg/tags/kwpotppt
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