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Prioritizing Variants 
in Personal Genomes: 

Using functional impact & recurrence, 
with particular application to cancer

Mark Gerstein
Yale

Slides freely 
downloadable from Lectures.GersteinLab.org

& “tweetable” (via @MarkGerstein). 
No Conflicts for this Talk

See last slide for more info.
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tumor

normal

Personal genomes will soon become a commonplace part of medical research & eventually treatment 
(esp. for cancer). They will provide a primary connection for biological science to the general public.

Personal Genomics 
as a Gateway into Biology
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Personal Genomics 
as a Gateway into Biology

Personal genomes will soon become a commonplace part of medical research & eventually treatment 
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Keys to genome interpretation

Relating individuals' variants to DBs

Scaling DBs to the population

Identifying key variants -
separating into rare, recurrent, 
common, &c
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The Scaling of Genomic 
Data Science:

Powered by exponential 
increases in 

data & computing

(Moore’s Law)

[NHGRI	website	+	Waldrop	(‘15)	Nature]
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Exponential Scaling Changes Fields Using Genomic Data

[Muir	et	al.	(‘15)	GenomeBiol.]
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The changing costs of a sequencing pipeline

From ‘00 to ~’20, 
cost of DNA sequencing expt. shifts 
from the actual seq. to sample 
collection & analysis

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]
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The changing costs of a sequencing pipeline

From ‘00 to ~’20, 
cost of DNA sequencing expt. shifts 
from the actual seq. to sample 
collection & analysis

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]
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The changing costs of a sequencing pipeline

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]

From ‘00 to ~’20, 
cost of DNA sequencing expt. shifts 
from the actual seq. to sample 
collection & analysis

Alignment algorithms scaling to keep 
pace with data generation
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The changing costs of a sequencing pipeline

From ‘00 to ~’20, 
cost of DNA sequencing expt. shifts 
from the actual seq. to sample 
collection & analysis

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]

Alignment algorithms scaling to keep 
pace with data generation
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The changing costs of a sequencing pipeline

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]

From ‘00 to ~’20, 
cost of DNA sequencing expt. shifts 
from the actual seq. to sample 
collection & analysis



1
3

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Common

Rare* (1-4%)

SNP 3.5 – 4.3M

Indel 550 – 625K
SV 2.1 – 2.5K 

(20Mb)
Total 4.1 – 5M

SNP 84.7M

Indel 3.6M
SV 60K

Total 88.3M

Human Genetic Variation
A Typical 
Genome

Population of 
2,504 peoples

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74  
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108

Common

Rare (~75%)

Class of Variants

Prevalence of Variants

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

A Cancer Genome

Coding Non-
coding

Germ-
line

22K 4.1 – 5M

Somatic ~50 5K

Origin of Variants

Driver (~0.1%)

Passenger
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Finding Key 
Variants

Germline

• Common variants
• Can be most readily associated with phenotype (ie disease) via GWAS
• Usually their functional effect is weaker
• Many are non-coding
• Issue of LD in identifying the actual causal variant.

• Rare variants
• Associations are usually underpowered due to low frequencies but often have larger 

functional impact
• Can be collapsed in the same element to gain statistical power (burden tests).

McCarthy, M. et al. Nat. Rev. Genet. 2008. 9, 356-369, Zuk, O. et al. PNSA. 2014. Vol. 11, no. 4, MacArthur DG et al. Nature 2014. 508:469-476

CAN YOU FIND THE PANDA?
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Finding Key 
Variants

Somatic

• Overall
• Often	these	can	be	thought	of		as very	rare	variants	

• Drivers
• Driver	mutation	is	a	mutation	that	directly	or	indirectly	confers	a	selective	growth	
advantage	to	the	cell	in	which	it	occurs.

• A	typical	tumor	contains	2-8	drivers;	the	remaining	mutations	are	passengers.
• Passengers

• Conceptually,	a	passenger	mutation	has	no	direct	or	indirect	effect	on	the	
selective	growth	advantage	of	the	cell	in	which	it	occurred.

CAN YOU FIND THE PANDA?

Vogelstein B. Science 2013. 339(6127):1546-1558
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Prioritizing Variants in Personal Genomes: Using functional 
impact & recurrence, with particular application to cancer

• Introduction
• An individual's disease variants as 

the public's gateway into genomics & biology
• The exponential scaling of data gen. & processing
• Big-data mining to prioritize key variants as drivers

• Functional impact #1: Coding
• ALoFT: Annotation of Loss-of-Function Transcripts. 
• Frustration as a localized metric of SNV impact. 

Differential profiles for oncogenes v. TSGs

• Functional impact #2: Non-coding
• uORFs: Feature integration to find small subset of 

upstream mutations that potentially alter translation
• FunSeq integrates evidence, 

with a “surprisal” based weighting scheme. 
Prioritizing rare variants with “sensitive sites” 
(human conserved)

• Recurrence: 
Statistics for driver identification 
• BMR (Background mutation rate) significantly varies 

& is correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, 

explicitly modeling covariates
• MOAT does a variety of non-parm. shuffles 

(annotation, variants, &c). Useful when explicit 
covariates not available. Slower 
but speeded up w/ GPUs

• Recurrence #2:
(Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, 

MET. Other suggestive non-coding hotspots.
• Analysis of signatures & tumor evolution helps 

identify key mutations in different ways 
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vat.gersteinlab.org

VCF Input 
Output:
• Annotated VCFs
• Graphical representations of 

functional impact on 
transcripts

Access:
• Webserver
• AWS cloud instance
• Source freely available

Habegger	L.*,	Balasubramanian	S.*,	et	al.	Bioinformatics,	2012

Variant Annotation Tool (VAT), developed for 1000G FIG

CLOUD APPLICATION
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Complexities in LOF annotation

Transcript isoforms,
distance to stop,
functional domains,
protein folding,
etc.

Balasubramanian	S.	et	al., Genes	Dev., ’11
Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17
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Annotation of
Loss-of-Function
Transcripts (ALoFT)

Runs on top of VAT

Output:

● Impact score: benign or deleterious.

● Decorated VCF.

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17
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LoF distribution varies as expected 
by mutation set (from healthy people v from disease)

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17
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ALoFT identifies deleterious
somatic LoF variants
Cancer genes:
• COSMIC consensus.
• Enriched in deleterious LoFs.

LoF tolerant genes:
• LoF in the 1KG cohort.
• Depleted in deleterious LoFs.

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17
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ALoFT refines cancer 
mutation characterization

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17

Vogelstein et al. '13: if >20% of mutations in gene 
inactivating → tumor suppressor gene (TSG).
ALoFT further refines 20/20 rule predictions.
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Prioritizing Variants in Personal Genomes: Using functional 
impact & recurrence, with particular application to cancer

• Introduction
• An individual's disease variants as 

the public's gateway into genomics & biology
• The exponential scaling of data gen. & processing
• Big-data mining to prioritize key variants as drivers

• Functional impact #1: Coding
• ALoFT: Annotation of Loss-of-Function Transcripts. 
• Frustration as a localized metric of SNV impact. 

Differential profiles for oncogenes v. TSGs

• Functional impact #2: Non-coding
• uORFs: Feature integration to find small subset of 

upstream mutations that potentially alter translation
• FunSeq integrates evidence, 

with a “surprisal” based weighting scheme. 
Prioritizing rare variants with “sensitive sites” 
(human conserved)

• Recurrence: 
Statistics for driver identification 
• BMR (Background mutation rate) significantly varies 

& is correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, 

explicitly modeling covariates
• MOAT does a variety of non-parm. shuffles 

(annotation, variants, &c). Useful when explicit 
covariates not available. Slower 
but speeded up w/ GPUs

• Recurrence #2:
(Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, 

MET. Other suggestive non-coding hotspots.
• Analysis of signatures & tumor evolution helps 

identify key mutations in different ways 
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What is 
localized 

frustration
?

[Ferreiro	et	al.,	PNAS	(’07)]
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Workflow for evaluating localized frustration changes (∆F)
[K
um

ar
	e
t	a

l.	
N
AR

(2
01

6)
]
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Complexity of the second order 
frustration calculation

T
i
m
e

Accuracy

Second order frustration calculation (∆F)

MD-assisted free energy calculation (∆G)

First order frustration calculation (F)
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Comparing ∆F values across different 
SNV categories: disease v normal

Loss of 
frustration

Gain of 
frustration

[Kumar	et	al,	NAR (2016)]

Core residues Surface residues

Normal mutations (1000G) tend to unfavorably 
frustrate (less frustrated) surface more than core, 
but for disease mutations (HGMD) 
no trend & greater changes
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Comparison between ∆F 
distributions: TSGs v. oncogenes

SNVs in TSGs change frustration more in core than the surface, whereas those associated with oncogenes manifest the 
opposite pattern. This is consistent with differences in LOF v GOF mechanisms.

[K
um

ar
	e
t	a

l,	
N
AR

(2
01

6)
]
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Prioritizing Variants in Personal Genomes: Using functional 
impact & recurrence, with particular application to cancer

• Introduction
• An individual's disease variants as 

the public's gateway into genomics & biology
• The exponential scaling of data gen. & processing
• Big-data mining to prioritize key variants as drivers

• Functional impact #1: Coding
• ALoFT: Annotation of Loss-of-Function Transcripts. 
• Frustration as a localized metric of SNV impact. 

Differential profiles for oncogenes v. TSGs

• Functional impact #2: Non-coding
• uORFs: Feature integration to find small subset of 

upstream mutations that potentially alter translation
• FunSeq integrates evidence, 

with a “surprisal” based weighting scheme. 
Prioritizing rare variants with “sensitive sites” 
(human conserved)

• Recurrence: 
Statistics for driver identification 
• BMR (Background mutation rate) significantly varies 

& is correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, 

explicitly modeling covariates
• MOAT does a variety of non-parm. shuffles 

(annotation, variants, &c). Useful when explicit 
covariates not available. Slower 
but speeded up w/ GPUs

• Recurrence #2:
(Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, 

MET. Other suggestive non-coding hotspots.
• Analysis of signatures & tumor evolution helps 

identify key mutations in different ways 
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Upstream open reading frames (uORFs) regulate 
translation are affected by somatic mutation

● uORFs regulate the translation of downstream 
coding regions.

● This regulation may be altered by somatic 
mutation in cancer.

● In Battle et al. 2014 data uORF gain & loss 
assoc. protein level change.

[McGillivray	et	al.,	NAR	(‘18)]
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The population of functional 
uORFs may be significant

● Ribosome profiling experiments have 
low overlap in identified uORFs. 

● This suggests high false-negative rate, 
and more functional uORFs than 
currently known.

[McGillivray	et	al.,	NAR	(‘18)]

From a “Universe” of 
1.3 M pot. uORFs
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Prediction & validation of 
functional uORFs using 89 features

● All near-cognate start codons predicted.

● Cross-validation on independent ribosome 
profiling datasets and validation using in vivo 
protein levels and ribosome occupancy in 
humans (Battle et al. 2014).

[McGillivray	et	al.,	NAR	(‘18)]

Expr.
Level

Tissue
Dist.

Int. 
ATG
Start

C
on
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n
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A comprehensive catalog of functional uORFs

● 180K: Large predicted positive set 
likely to affect translation 

● Calibration on gold standards, 
suggests getting ~70% of known

[McGillivray	et	al.,	NAR	(‘18)]

Universe of 1.3M
uORFs scored via 

Simple Bayes algo.

● Predicted functional uORFs may be intersected 
with disease associated variants.



3
5

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Somatic alteration of uORFs disproportionately affects 
certain cancers and molecular pathways

[McGillivray	et	al.,	NAR	(‘18)]

● uORF gain and loss occurs in cancer (incl. in cancer associated genes, e.g., MYC, BCL2, etc.).
● Alteration of translation may contribute to cancer. 
● These changes are concentrated in certain cancers and pathways.
● Mutations leading to uORFs diff in somatic vs. germline.
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Prioritizing Variants in Personal Genomes: Using functional 
impact & recurrence, with particular application to cancer

• Introduction
• An individual's disease variants as 

the public's gateway into genomics & biology
• The exponential scaling of data gen. & processing
• Big-data mining to prioritize key variants as drivers

• Functional impact #1: Coding
• ALoFT: Annotation of Loss-of-Function Transcripts. 
• Frustration as a localized metric of SNV impact. 

Differential profiles for oncogenes v. TSGs

• Functional impact #2: Non-coding
• uORFs: Feature integration to find small subset of 

upstream mutations that potentially alter translation
• FunSeq integrates evidence, 

with a “surprisal” based weighting scheme. 
Prioritizing rare variants with “sensitive sites” 
(human conserved)

• Recurrence: 
Statistics for driver identification 
• BMR (Background mutation rate) significantly varies 

& is correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, 

explicitly modeling covariates
• MOAT does a variety of non-parm. shuffles 

(annotation, variants, &c). Useful when explicit 
covariates not available. Slower 
but speeded up w/ GPUs

• Recurrence #2:
(Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, 

MET. Other suggestive non-coding hotspots.
• Analysis of signatures & tumor evolution helps 

identify key mutations in different ways 
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Coding and non-coding elements may synergistically contribute to 
cancer

[McGillivray	et	al.,	Ann.	Rev.	Biomedical	Data	Science (‘18),	in	press.]
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Funseq: a flexible framework to determine 
functional impact & use this to prioritize variants

Annotation (tf binding 
sites open chromatin, 
ncRNAs) & Chromatin 
Dynamics

Conservation
(GERP, allele freq.)

Mutational impact 
(motif breaking, Lof) 

Network (centrality 
position) [F

u 
et

 a
l.,

 G
en

om
eB

io
lo

gy
('1

4)
, ,

 K
hu

ra
na

et
 a

l.,
 S

ci
en

ce
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)]
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Finding "Conserved” Sites in the Human Population:
Negative selection in non-coding elements based on

Production ENCODE & 1000G Phase 1

(Non-coding	RNA)

(DNase	I	hypersensitive	sites)

Depletion	of	Common	Variants
in	the	Human	Population

Broad	categories	of	
regulatory	regions	under	

negative	selection
Related	to:
ENCODE,	Nature,	2012

Ward	&	Kellis,	Science,	2012
Mu	et	al,	NAR,	2011

(Transcription	factor	binding	sites)

(TFSS: Sequence-specific TFs)
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Differential 
selective 
constraints
among specific 
sub-categories

Sub-categorization	possible	
because	of	better	statistics	from	
1000G	phase	1	v	pilot

[Khurana et	al.,	Science (‘13)]
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Sub-categorization	possible	
because	of	better	statistics	from	
1000G	phase	1	v	pilot

Defining 
Sensitive
non-coding 
Regions

[Khurana	et	al.,	Science (‘13)]

Start 677 high-
resolution non-
coding categories; 
Rank & find those 
under strongest 
selection

~0.02% genomic coverage (top 5)
~0.4% genomic coverage  (~ top 25)
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SNPs which break TF motifs are under stronger selection

[Khurana	et	al.,	Science (‘13)]
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FunSeq.gersteinlab.org
HOT	region

Sensitive	region
Polymorphisms

Genome

• Info. theory based method (ie
annotation “surprisal”) for weighting 
consistently many genomic features

• Practical web server 
• Submission of variants & pre-

computed large data context from 
uniformly processing large-scale 
datasets

[Fu et al., GenomeBiology ('14)]
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Germline pathogenic variants show 
higher core scores than controls

3 controls with natural polymorphisms (allele frequency >= 1% )
1.  Matched region:  1kb around HGMD variants
2.  Matched TSS:  matched for distance to TSS
3.  Unmatched: randomly selected

Ritchie	et	al.,	Nature	Methods,	2014 [Fu et al., GenomeBiology ('14, in revision)]
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Flowchart for 1 Prostate Cancer
Genome (from Berger et al. '11)

[K
hu

ra
na

et
 a

l.,
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(‘1

3)
]
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Prioritizing Variants in Personal Genomes: Using functional 
impact & recurrence, with particular application to cancer

• Introduction
• An individual's disease variants as 

the public's gateway into genomics & biology
• The exponential scaling of data gen. & processing
• Big-data mining to prioritize key variants as drivers

• Functional impact #1: Coding
• ALoFT: Annotation of Loss-of-Function Transcripts. 
• Frustration as a localized metric of SNV impact. 

Differential profiles for oncogenes v. TSGs

• Functional impact #2: Non-coding
• uORFs: Feature integration to find small subset of 

upstream mutations that potentially alter translation
• FunSeq integrates evidence, 

with a “surprisal” based weighting scheme. 
Prioritizing rare variants with “sensitive sites” 
(human conserved)

• Recurrence: 
Statistics for driver identification 
• BMR (Background mutation rate) significantly varies 

& is correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, 

explicitly modeling covariates
• MOAT does a variety of non-parm. shuffles 

(annotation, variants, &c). Useful when explicit 
covariates not available. Slower 
but speeded up w/ GPUs

• Recurrence #2:
(Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, 

MET. Other suggestive non-coding hotspots.
• Analysis of signatures & tumor evolution helps 

identify key mutations in different ways 



4
7

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Ca
nc
er
	T
yp
e	
1

Ca
nc
er
	T
yp
e	
2

Ca
nc
er
	T
yp
e	
3

Mutation recurrence



4
8

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Ca
nc
er
	T
yp
e	
1

Ca
nc
er
	T
yp
e	
2

Ca
nc
er
	T
yp
e	
3

Early replicated regions Late replicated regions

Mutation recurrence



4
9

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Late replicated regions

Ca
nc
er
	T
yp
e	
1

Ca
nc
er
	T
yp
e	
2

Ca
nc
er
	T
yp
e	
3

Early replicated regions

Noncoding 
annotations



5
0

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Late replicated regions

Ca
nc
er
	T
yp
e	
1

Ca
nc
er
	T
yp
e	
2

Ca
nc
er
	T
yp
e	
3

Early replicated regions

Noncoding 
annotations



5
1

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Cancer 
Somatic 

Mutational 
Heterogeneity, 
across cancer 

types, 
samples & 

regions

[Lochovsky et al. NAR (’15)]
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[Yan et al., PLOS Comp. Bio. (‘17); S. Li et al., PLOS Genetics (‘17)] ]

Variation in somatic mutations 
is closely associated with 
chromatin structure (TADs) & 
replication timing

Chromatin remodeling failure leads to more mutations in 
early-replicating regions 

genomic distance from the TAD boundary

[Lochovsky et al. NAR (‘15)]
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mrTADFinder: 
Identifying TADs at multiple 
resolutions by maximizing 
modularity 
vs appropriate null

[Yan et al., PLOS Comp. Bio. (‘17)]
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Prioritizing Variants in Personal Genomes: Using functional 
impact & recurrence, with particular application to cancer

• Introduction
• An individual's disease variants as 

the public's gateway into genomics & biology
• The exponential scaling of data gen. & processing
• Big-data mining to prioritize key variants as drivers

• Functional impact #1: Coding
• ALoFT: Annotation of Loss-of-Function Transcripts. 
• Frustration as a localized metric of SNV impact. 

Differential profiles for oncogenes v. TSGs

• Functional impact #2: Non-coding
• uORFs: Feature integration to find small subset of 

upstream mutations that potentially alter translation
• FunSeq integrates evidence, 

with a “surprisal” based weighting scheme. 
Prioritizing rare variants with “sensitive sites” 
(human conserved)

• Recurrence: 
Statistics for driver identification 
• BMR (Background mutation rate) significantly varies 

& is correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, 

explicitly modeling covariates
• MOAT does a variety of non-parm. shuffles 

(annotation, variants, &c). Useful when explicit 
covariates not available. Slower 
but speeded up w/ GPUs

• Recurrence #2:
(Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, 

MET. Other suggestive non-coding hotspots.
• Analysis of signatures & tumor evolution helps 

identify key mutations in different ways 
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Cancer Somatic Mutation Modeling
• Suppose there are k genome 

elements. For element i, define:
– ni: total number of nucleotides
– xi: the number of mutations within the 

element
– p: the mutation rate
– Ri: the covariate rank of the element

• Non-parametric model is useful 
when covariate data is missing for 
the studied annotations

• Also sidesteps issue of properly 
identifying and modeling every 
relevant covariate 
(possibly hundreds)

Model 1: Constant Background 
Mutation Rate (Model from 
Previous Work)

[Lochovsky et al. NAR (’15)]

PARAMETRIC MODELS

Model 3a: Random 
Permutation of Input 
Annotations
Shuffle	annotations	within	local	
region	to	assess	background	
mutation	rate.

Model 2a: Varying Mutation Rate
with Single Covariate Correction

Model 2b: Varying Mutation Rate
with Multiple Covariate Correction

NON-PARAMETRIC MODELS

Model 3b: Random 
Permutation of Input Variants
Shuffle	variants	within	local	
region	to	assess	background	
mutation	rate.

Assume	constant	background	
mutation	rate	in	local	regions.

[Lochovsky et al. Bioinformatics in press]
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MOAT-a: Annotation-based permutation

[Lochovsky et al. Bioinformatics in press]
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MOAT-v: Variant-based Permutation

[Lochovsky et al. Bioinformatics in press]

Can preserve tri-nt context in shuffle
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MOAT-s: a variant on MOAT-v
• A somatic variant simulator

• Given a set of input variants, shuffle to new locations, taking genome structure into 
account

[Lochovsky et al. Bioinformatics in press]
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LARVA Model Comparison
• Comparison of mutation count frequency implied by the binomial model (model 1) and the 

beta-binomial model (model 2) relative to the empirical distribution
• The beta-binomial distribution is significantly better, especially for accurately modeling 

the over-dispersion of the empirical distribution

[Lochovsky et al. NAR (’15)]
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MOAT: recapitulates LARVA 
with GPU-driven runtime scalability

Computational efficiency of MOAT’s 
NVIDIA™ CUDA™ version, with 
respect to the number of permutations, 
is dramatically enhanced compared to 
CPU version.

MOAT’s high mutation burden elements 
recapitulate LARVA’s results & published 
noncoding cancer-associated elements.

Number	of	
permutations

Fold	speedup	of	
CUDA version

1k 14x
10k 100x
100k 256x

..

.

[Lochovsky et al. Bioinformatics in press]
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Prioritizing Variants in Personal Genomes: Using functional 
impact & recurrence, with particular application to cancer

• Introduction
• An individual's disease variants as 

the public's gateway into genomics & biology
• The exponential scaling of data gen. & processing
• Big-data mining to prioritize key variants as drivers

• Functional impact #1: Coding
• ALoFT: Annotation of Loss-of-Function Transcripts. 
• Frustration as a localized metric of SNV impact. 

Differential profiles for oncogenes v. TSGs

• Functional impact #2: Non-coding
• uORFs: Feature integration to find small subset of 

upstream mutations that potentially alter translation
• FunSeq integrates evidence, 

with a “surprisal” based weighting scheme. 
Prioritizing rare variants with “sensitive sites” 
(human conserved)

• Recurrence: 
Statistics for driver identification 
• BMR (Background mutation rate) significantly varies 

& is correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, 

explicitly modeling covariates
• MOAT does a variety of non-parm. shuffles 

(annotation, variants, &c). Useful when explicit 
covariates not available. Slower 
but speeded up w/ GPUs

• Recurrence #2:
(Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, 

MET. Other suggestive non-coding hotspots.
• Analysis of signatures & tumor evolution helps 

identify key mutations in different ways 
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Power, as an issue in driver discovery 

Better 
annotation or 
large number 
of samples 
could help.

[K
um

ar
 &

 G
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ei

n,
 N

at
ur

e
('1

7)
]



6
4

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

An (underpowered) 
case study: pRCC

• Kidney cancer lifetime risk of 1.6% &
the papillary type (pRCC) counts for 
~10% of all cases

• TCGA project sequenced 161 pRCC
exomes & classified them into 
subtypes
– Yet, cannot pin down the cause for a 

significant portion of cases....
•35 WGS of TN pairs, 
perhaps useful? But not that definitive 
from a recurrence perspective

[Cancer Genome Atlas Research Network N Engl J Med. (‘16) ]
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Tyr-kinase 
MET:

Known Facts 
& New Results

•MET is long known pRCC driver
•In MET, TCGA found somatic SNVs, dup-
lications & an alt. splicing event as drivers (43/161).
•In addition, from 35 WGS we found

–A noncoding hotspot associated with MET
–Lack of SVs & breakpoints disrupting MET
–Germline SNP (rs11762213) predicts survival 
in type 2 patients

[A. Gentile, L. 
Trusolino and PM. 
Comoglio, Cancer 
and Metastasis 
Reviews (‘08); S. Li, 
B. Shuch and M. 
Gerstein PLOS 
Genetics (‘17)] 
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Beyond 
MET: 2 
non-coding 
hotspots in 
NEAT & 
ERRFl1, 

supported 
by expr. 
changes & 
survival 
analysis

[L
i e

t a
l. 

PL
O

S 
G

en
et

ic
s 

(‘1
7)

] 
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Yates	et	al,	NRG	(2012)

Tumor	Evolution:	Highlight	the	Ordering	of	Key	Mutations
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Construct evolutionary trees in pRCC

• Infer mutation order and tree structure based on mutation 
abundance (PhyloWGS, Deshwar et al., 2015)

• Some of the key mutations occur in all the clones while others 
are just in some parts of the tree 

DNMT3A: premature stop
NEAT1: noncoding
SMARCA4: missense

MET: noncoding
ERRFI1: noncodingKDM6A: missense

[S. Li, B. Shuch and M. Gerstein PLOS Genetics (‘17)] 
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[S. Li, B. Shuch and M. Gerstein PLOS Genetics (‘17)] 

Mutation
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[S. Li, B. Shuch and M. Gerstein PLOS Genetics (‘17)] 
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Tree topology correlates with molecular subtypes

[L
i e

t a
l.,

 P
LO

S 
G

en
et
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(‘1
7)

] 
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S: Mutation signature 
inferred

M: Mutation spectrum 
observed [T. Helleday, S. Eshtad & S. Nik-Zainal, 

Nature Reviews Genetics (’14), L. Alexandrov et al., Nature (‘13) ]

Mutational processes carry context-specific signatures

A[C>T]G
C[C>T]G

G[C>T]G
T[C>T]G

A[C>T]G
C[C>T]G

M = S × W+ ε
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• The loadings on PC1 are mostly [C>T]G
• Confirmed by higher C>T% in CpGs  in the hypermethylated group (cluster1) 

A[C>T]G
C[C>T]G

G[C>T]G
T[C>T]G

CpGs drive inter-patient variation in pRCC
mutational spectra

[S. Li, B. Shuch and M. Gerstein PLOS Genetics (‘17)] 
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• Chromatin remodeling 
defect (“mut”) leads to 
more mutations in 
open chromatin (raw 
number & fraction) in 
those pRCC cases w/ 
the mutation

Key mutation affects 
mutational landscape 
which, in turn, affects 

overall burden in pRCC

[S. Li, B. Shuch and M. Gerstein PLOS Genetics (‘17)] 
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Prioritizing Variants in Personal Genomes: Using functional 
impact & recurrence, with particular application to cancer

• Introduction
• An individual's disease variants as 

the public's gateway into genomics & biology
• The exponential scaling of data gen. & processing
• Big-data mining to prioritize key variants as drivers

• Functional impact #1: Coding
• ALoFT: Annotation of Loss-of-Function Transcripts. 
• Frustration as a localized metric of SNV impact. 

Differential profiles for oncogenes v. TSGs

• Functional impact #2: Non-coding
• uORFs: Feature integration to find small subset of 

upstream mutations that potentially alter translation
• FunSeq integrates evidence, 

with a “surprisal” based weighting scheme. 
Prioritizing rare variants with “sensitive sites” 
(human conserved)

• Recurrence: 
Statistics for driver identification 
• BMR (Background mutation rate) significantly varies 

& is correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, 

explicitly modeling covariates
• MOAT does a variety of non-parm. shuffles 

(annotation, variants, &c). Useful when explicit 
covariates not available. Slower 
but speeded up w/ GPUs

• Recurrence #2:
(Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, 

MET. Other suggestive non-coding hotspots.
• Analysis of signatures & tumor evolution helps 

identify key mutations in different ways 
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Prioritizing Variants in Personal Genomes: Using functional 
impact & recurrence, with particular application to cancer

• Introduction
• An individual's disease variants as 

the public's gateway into genomics & biology
• The exponential scaling of data gen. & processing
• Big-data mining to prioritize key variants as drivers
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• ALoFT: Annotation of Loss-of-Function Transcripts. 
• Frustration as a localized metric of SNV impact. 
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• Functional impact #2: Non-coding
• uORFs: Feature integration to find small subset of 

upstream mutations that potentially alter translation
• FunSeq integrates evidence, 

with a “surprisal” based weighting scheme. 
Prioritizing rare variants with “sensitive sites” 
(human conserved)

• Recurrence: 
Statistics for driver identification 
• BMR (Background mutation rate) significantly varies 

& is correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, 

explicitly modeling covariates
• MOAT does a variety of non-parm. shuffles 

(annotation, variants, &c). Useful when explicit 
covariates not available. Slower 
but speeded up w/ GPUs

• Recurrence #2:
(Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, 

MET. Other suggestive non-coding hotspots.
• Analysis of signatures & tumor evolution helps 

identify key mutations in different ways 
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github.com/gersteinlab/Frustration
S Kumar, D Clarke

github.com/gersteinlab/MrTADfinder
KK Yan, S Lou

VAT.gersteinlab.org

L Habegger, S Balasubramanian, DZ Chen, E Khurana, 
A Sboner, A Harmanci, J Rozowsky, D Clarke, M Snyder

ALoFT.gersteinlab.org

S Balasubramanian, Y Fu, M Pawashe, P
McGillivray, M Jin, J Liu, K Karczewski, D MacArthur

FunSeq.gersteinlab.org

Y Fu, E Khurana, Z Liu, S Lou, J Bedford, X Mu, K Yip

pRCC - S Li, B Shuch

MOAT.gersteinlab.org - L Lochovsky, J Zhang

CostSeq2 - P Muir, S Li, S Lou, D Wang, 
DJ Spakowicz, L Salichos, J Zhang, GM Weinstock, 
F Isaacs, J Rozowsky

LARVA.gersteinlab.org

L Lochovsky, J Zhang, Y Fu, E Khurana

github.gersteinlab.org/uORFs
P McGillivray, R Ault, M Pawashe, R Kitchen, 
S Balasubramanian
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