Overview:
what is
Biomed. Data science?
(Placing it into context)



Jim Gray’s 4t Paradigm

The

PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

Science Paradigms

Thousand years ago:

science was empirical
describing natural phenomena

Last few hundred years:

theoretical branch N2
using models, generalizations [g]=4ﬂGp_ c”
Last few decades: G

a computational branch
simulating complex phenomena

Today: data exploration (eScience)
unify theory, experiment, and simulation

— Data captured by instruments
or generated by simulator

— Processed by software
— Information/knowledge stored in computer

— Scientist analyzes database/files
using data management and statistics
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#3 - Simulation

Prediction based on
physical principles (eg
Exact Determination of
Rocket Trajectory)

Emphasis on:
Supercomputers

Jim Gray’ s 4th Paradigm

Science Paradigms

* Thousand years ago:
science was empirical
describing natural phenomena
» Last few hundred years:
theoretical branch
using models, generalizations e
N Last few decades: [*] )
a computational branch
simulating complex phenomena
p Today:
data exploration (eScience)
unify theory, experiment, and simulation
— Data captured by instruments
Or generated by simulator
— Processed by software
— Information/Knowledge stored in computer

— Scientist analyzes database / files
using data management and statistics

Gray died in '07.
Book about his ideas came out in ‘09

[Slide from : http://research.microsoft.com/en-us/um/people/gray/talks/stanford%2520symbolic%2520systems%2520seminar.ppt]
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What is Data Science? An overall, bland definition...

« Data Science encompasses the study of the entire lifecycle of data

- Understanding of how data are gathered &
the issues that arise in its collection

- Knowledge of what data sources are available
& how they may be synthesized to solve problems

- The storage, access, annotation, management, &
transformation of data

» Data Science encompasses many aspects of data analysis

— Statistical inference, machine learning, & the design of algorithms
and computing systems that enable data mining

— Connecting this mining where possible with physical modeling
- The presentation and visualization of data analysis
- The use of data analysis to make practical decisions & policy
» Secondary aspects of data, not its intended use — eg the data exhaust
— The appropriate protection of privacy
- Creative secondary uses of data — eg for Science of science
- The elimination of inappropriate bias in the entire process




* Ads, media, product _ _ _
placement, P Data Science in the wider world:

supply optimization, a buzz-word for successful Ads

Integral to success of
GOOG, FB, AMZN, Eﬂ‘;}’nggs
WMT... Review

E(.O;L';‘,‘,,is( m‘,:t,;m;, | Data Scientist: The Sexiest Job of the 21st Century

R Pt | e bt 1T by Thomas H. Davenport and D.J. Patil

111e data deluge

ANE HOW 53 BANGLE I A 34-PALT SPOOAL RIP2RT

Quentin Gallivan is CEO of Pentaho Corp., an Orlando, Florida-based
g provider of business analytics software.

108 CIO Network o Cognizant
ﬁ ‘:ij\ DDDDDDDDDDDDDD NOLOGY LEADERS.

e 4 : N -
— o Rio Tyate . Artwork: Tamar Cohen, Andrew J Buboltz, 2011, silk screen on a page from a higH

— Why Big Datq Is All Retailers ’ ’
B Want for Christmas ) ) ) )

s Y When Jonathan Goldman arrived for work in June 2006 at LinkedIn, the business n
Do up. The company had just under 8 million accounts, and the number was growing q

uest post written by Quentin Gallivan . . e N . . .
2 guestposiroriten by QuentinG , friends and colleagues to join. But users weren't seeking out connections with the p

[Oct. ‘12 issue]
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Data
Science in
Traditional

Science

High energy physics - o
Large Hadron Collider

Astronomy -
Sloan Digital Sky survey

Pre-dated commercial mining
Instrument generated

Large data sets often created by large teams not to
answer one Q but to be mined broadly

Often coupled to a physical/biological model
Interplay w/ experiments

Ecology
& Earth Sci.
- Fluxnet

Neuroscience -
The Human Connectome Project

y sequencer

SCIENCEIN THE
PETABYTEERA
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4Ms:

Measurement,
Mining,
Modeling

& Manipulation

TREY IDEKER, L. RAIMOND WINSLOW & A. DOUGLAS
LAUFFENBURGER (’06). “Bioengineering and Systems Biology,” Annals
of Biomedical Engineering DOI: 10.1007/s10439-005-9047-7

Image from http://web.aibn.uq.edu.au/cssb/ResearchProjects.html
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Lampooned but actually very successful
No ability to predict a century ago;
Weather now forecasts checked by billions every day
forecasting Interpretable & useful statistical predictions,
informing everything from clothing choices to commerce

How do they do it?
Physical models & massive sim. useful
(but not sufficient - think “butterfly” effect.)
Large-scale data collection via sensors

Horizontal Grid
(Latitude-Longitude)

Vertical Grid )
(Height or Pressure) |

NOAA CRADA Collaborators
Data Expertise Infrastructure Expertise

Combined forecast via BMA
D ‘%}%
SN
5

b

1964, first climate model

Growth of NOAA's Archive
160 Growth of NOAA's
| wSatelite Archived Satelite Date
= NEXRAD [T
,;20 | . :::::\ Datasets é‘“ feossmany
£ | = Geophysical Datesets fo
1 Mt i, | ” End User Third Party Partner
i gL Wider Consumer Communit Value-Added Services
" —
0 o i i i I I I I

e 2010s, big data project

Fiscal Year
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Biomedical Data Science

* The ambition of & eventually model of the
genome, connectome, organs...

* The recent success of genomics (to highlight) but
maybe a

* How IS integral to the changing landscape

* Using large-scale data as an for
heterogeneous phenotype/medical data



genomic information

F—

Human genome annotation
— a non-intuitive map

ENCrecrorema Or DNA Ecevexrs

S
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geographical information

gV

Habitat information

Height information

Base mapping

e Mutation

Aerial imagery

4. Copy number

Gene expression

Platforms

DNA methylation

MicroRNA

RPPA

« Large-scale organisation
providing an overview of the genome
 Integration of heterogeneous data

Clinical data



Biomed. Data Sci. via Example:
Huge Success in Amassing
Genotype-Phenotype

Relationships

Double
Helix

The discovery
of double helix
by James
Watson and
Francis Crick

Thousand

Genomes
Sequenced By far the
Genome most
Haemophilus detailed
influenzae as catalogue of
the first humap
organism’s genetic
genome variation
completely

sequenced

biobank’

Integrated
health data

Study with over
0.5M
participants
collecting
integrated data
from
genotypes to
phenotypic
details and
clinical
information
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Sequencing Data
Explosion:

Powered by
hyper-exponential
incr. in data &
exponential
increase in
computing
(Moore’s Law)

Cost per Raw Megabase of DNA Sequence

N I H National Human Genome
Research Institute

genome.gov/sequencingcosts

Moore's Law
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Kryder’'s Law and

S-curves
underlying
exponential
growth

* Moore’s & Kryder’s

Laws

- As important as the
increase in computer speed
has been, the ability to
store large amounts of
information on computers is
even more crucial

« Exponential increase
seen in Kryder'’s law
is a superposition of
S-curves for different
technologies

Performance

10° — — ——IEMYE=2 Pl MENE Y= B -

10— — — — — — — — — — — — — — — — — — — -
o Perpendicular Writing and GMR o !
S L%
O .
©
(-
()
o
0n
(]
)
>
o]
©
2
O

-5 o
10° - — =~ = = = = = — = = = = = = — -
' o o~
108 7 : : : : : :
1980 1984 1988 1992 1996 2000 2004 2008
Year
N
Maturity
Expansion
Technology 2
Development

Time

A\ 4

13 =



~*~ NASA Earth Data
-+ Genomics
+- Cancer Image Database

SequenCing - TOP 500 (Pflops)
cost
reductions

have
resulted in
an explosion
of data
gletd
— Nature
Science re12
7| — Cell 20 ‘
— ’C\;::ome Biology. gl
6- Nat. Biotech ~ f----- 20¢
— ISMEJ sl
g 5| — ;':SSChembio —————— 10
(7] Molecular Ecology
m 0.5
E 4’ ””””””””””””””””””” 00k
5
T R H
° o]
The type of 2 )
sequence data 22 e e

deposited has | ,,,,,,,,,,,,,,,,,,,,,, e

changed as well. L

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

2009 2010 2011 2012 2013 2014 2015
Date
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The changing costs of a sequencing pipeline

= = Sample collection and [ Sequencing Data reduction Downstream

Experimental experimental design W Data management analyses
s design
collection

l 100% _

-
TQ)

management

(Data reduction,
— v —

High-level summaries
(VCF, Peaks, RPKM)

Downstream analyses

—
M, MRF)
eaks, RPKI

(differential expression, 0%~
novel TARS, regulatory Pre-NGS Now Future
G ba) (Approximately 2000)  (Approximately 2010)  (Approximately 2020)

From ‘00 to ~’ 20,

cost of DNA sequencing expt. shifts from
the actual seq. to sample

collection & analysis

[Sboner et al. ( “11), Muir et al. (‘15) Genome Biology]
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The changing costs of a sequencing pipeline

100% _

i !

STQ)

Mapped reads
(BAM, CRAM, MRF)
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= Sample collection and [ Sequencing Data reduction Downstream

Experimental experimental design W Data management analyses
s design
collection

(Data reduction,__,
— v —

High-level summaries
(VCF, Peaks, RPKM)

i 1

Downstream analyses

\

(differential expression, 0% =
novel TARs, regulatory Pre-NGS Now
networks, ...) (Approximately 2000)  (Approximately 2010)

Future
(Approximately 2020)

From ‘00 to ~’ 20,
cost of DNA sequencing expt. shifts from
the actual seq. to sample
collection & analysis

B Labor

3 Instrument depreciation and maintenance
Il Reagents and supplies

3 Indirect costs

[Sboner et al. ( “11), Muir et al. (‘15) Genome Biology]
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The changing costs of a sequencing pipeline

= Sample ion and = " [ Data reduction Downstream

e Experimental experimental design W Data management analyses
ample design
collection
‘ 100% _

Sequencing

Data reduction

High-level summaries
(VCF, Peaks, RPKM)

0%
Pre-NGS Now Future
(Approximately 2000)  (Approximately 2010)  (Approximately 2020)

From ‘00 to ~’ 20,

cost of DNA sequencing expt. shifts from
the actual seq. to sample

collection & analysis
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Alignment algorithms scaling to keep
pace with data generation
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The changing costs of a sequencing pipeline
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[Sboner et al. ( “11), Muir et al. (‘15) Genome Biology]
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THE GENOME-WIDE TIDE

Large genome-wide association studies that involve more than
10,000 people are growing in number every year — and their
sample sizes are increasing.

Sample sizes: M More than 200,000 100,000-199,999
M 50,000-99,999 B 10,000-49,999

Cumulative study number

2008 2009 2010 2011 2012 2013 2014 2015 2016
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Basic Science to Medical Practice

Research Initiatives and Biomedical Startups

Large-scale genomics data as a anchor to organize large
amounts of phenotype data — EMRs, wearables..

NATIONAL CANCER INSTITUTE
THE CANCER GENOME ATLAS

TCGA RESULTS & FINDINGS

STARTUPS INITIATIVES

Medical Big Data: Promise and Challenges (Lee and
Yoon , Kidney Res. Clin. Pract., 2017)

!

1.Genomics of disease-focused
cohorts; GWAS [2002-present], TCGA,
PCAWG [2006-present]

2.Integration of genomic data with rich
clinical phenotypes; UKBiobank, All of
Us [2016-present]

3.Integration of genomic data in EMRs
for clinical decision support &
wearables; [Near future]

4.Home-based routine sequencing of
DNA and RNA in blood as part of
preventive care [Speculative future]

FUTURA
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EX of ’omics research on

focused patient cohorts:

Many Yale Researchers
Involved in Neurogenomics

 Involved national initiatives:
psychENCODE, CMG,
BrainSpan, BSMN,
NIDA Neuroproteomics

 Yale investigators:
M Gunel, N Sestan, F Vaccarino, J Noonan,
J Gelernter, A Nairn

* DNA variants, altered protein & RNA levels in brains in
development & various diseases (eg ASD, SCZ)
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Cumulative # of X-ray structures and # exomes

0e+00
l

Trends in data generation point to growing opportunities for leveraging
sequence variants to study structure (and vice versa)

The volume of sequenced exomes is outpacing that of structures, while
solved structures have become more complex in nature.
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1980 1990 2000 2010
Year

Exome data hosted on NCBI Sequence Read Archive (SRA) [Sethi et al. COSB ("15)]
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Experimental determination of 3D structures can not keep up with the explosive growth of sequence information
The Electron Microscopy (EM) has emerged as a powerful tool in determining 3D structures

—@— of Sequences (GeneBank)
—@— of Structures (PDB)
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Growing sequence redundancy in the PDB (as evidenced by a reduced pace of novel fold
discovery) offers a more comprehensive view of how such sequences occupy conformational
landscapes — Gene & Struc. Families as main organizing principle

% Increase
0.15 0.20 0.25 0.30
l | | l

0.10
I

0.05
I

0.00
I

I I I I I I I I I I I I
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Year
PDB: Berman HM, et al. NAR. (2000)

CATH: Sillitoe I, et al. NAR. (2015)
[Sethi et al. COSB ("15)] SCOP: Fox NK et al. NAR. (2014)



Core Qs v Creative Use of the Data

Data Exhaust

Metadata

Front End Back end
Core scientific Data collection and Data Exhaust
purposes analysis

Data on
Collaboration,
publication and
Infrastructure

« Data Exhaust = Exploitable byproducts of big
data collection and analysis

 Creative use of Data is key to Data Science !

* Aspects of Privacy but also Science of
Science

[PHOTO: RELAXNEWS; from http://www.lapresse.ca]
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Genomics: as Data Science sub-discipline

» Developing ways of organizing & mining categorizing information on a
large scale

- Very fundamental & early form of "Big Data”, feeding into other enterprises
(classification approach, R)

- Also importing tech. developed in other big data disciplines (Hadoop)

Music Genome l)l‘()it’('l

PANDORA §

E Arts_yﬁ?' Resources for discovering and learning about art EXPLORE DISCOVER
. online CATEGORIES INSTITUTIONS
Education
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What is The Art Genome Project? Seven Facts about the
Discovery and Classification System That Fuels Artsy

THE ART GENOME PROJECT
BY MATTHEW ISRAEL, JESSICA BACKUS AND OLIVIA JENE FAGON
FEB 9TH, 2016 5:00 AM
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