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Overview:
what is
Biomed. Data science?
(Placing it into context)



Jim Gray’s 4t Paradigm

The

PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

Science Paradigms

Thousand years ago:

science was empirical
describing natural phenomena

Last few hundred years:

theoretical branch N2
using models, generalizations [g]=4ﬂGp_ c”
Last few decades: G

a computational branch
simulating complex phenomena

Today: data exploration (eScience)
unify theory, experiment, and simulation

— Data captured by instruments
or generated by simulator

— Processed by software
— Information/knowledge stored in computer

— Scientist analyzes database/files
using data management and statistics
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#3 - Simulation

Prediction based on
physical principles (eg
Exact Determination of
Rocket Trajectory)

Emphasis on:
Supercomputers

Jim Gray’ s 4th Paradigm

Science Paradigms

* Thousand years ago:
science was empirical
describing natural phenomena
» Last few hundred years:
theoretical branch
using models, generalizations e
N Last few decades: [*] )
a computational branch
simulating complex phenomena
p Today:
data exploration (eScience)
unify theory, experiment, and simulation
— Data captured by instruments
Or generated by simulator
— Processed by software
— Information/Knowledge stored in computer

— Scientist analyzes database / files
using data management and statistics

Gray died in '07.
Book about his ideas came out in ‘09

[Slide from : http://research.microsoft.com/en-us/um/people/gray/talks/stanford%2520symbolic%2520systems%2520seminar.ppt]
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What is Data Science? An overall, bland definition...

« Data Science encompasses the study of the entire lifecycle of data

- Understanding of how data are gathered &
the issues that arise in its collection

- Knowledge of what data sources are available
& how they may be synthesized to solve problems

- The storage, access, annotation, management, &
transformation of data

» Data Science encompasses many aspects of data analysis

— Statistical inference, machine learning, & the design of algorithms
and computing systems that enable data mining

— Connecting this mining where possible with physical modeling
- The presentation and visualization of data analysis
- The use of data analysis to make practical decisions & policy
» Secondary aspects of data, not its intended use — eg the data exhaust
— The appropriate protection of privacy
- Creative secondary uses of data — eg for Science of science
- The elimination of inappropriate bias in the entire process




* Ads, media, product _ _ _
placement, P Data Science in the wider world:

supply optimization, a buzz-word for successful Ads

Integral to success of
GOOG, FB, AMZN, Eﬂ‘;}’nggs
WMT... Review

E(.O;L';‘,‘,,is( m‘,:t,;m;, | Data Scientist: The Sexiest Job of the 21st Century

R Pt | e bt 1T by Thomas H. Davenport and D.J. Patil

111e data deluge

ANE HOW 53 BANGLE I A 34-PALT SPOOAL RIP2RT

Quentin Gallivan is CEO of Pentaho Corp., an Orlando, Florida-based
g provider of business analytics software.

108 CIO Network o Cognizant
ﬁ ‘:ij\ DDDDDDDDDDDDDD NOLOGY LEADERS.

e 4 : N -
— o Rio Tyate . Artwork: Tamar Cohen, Andrew J Buboltz, 2011, silk screen on a page from a higH

— Why Big Datq Is All Retailers ’ ’
B Want for Christmas ) ) ) )

s Y When Jonathan Goldman arrived for work in June 2006 at LinkedIn, the business n
Do up. The company had just under 8 million accounts, and the number was growing q

uest post written by Quentin Gallivan . . e N . . .
2 guestposiroriten by QuentinG , friends and colleagues to join. But users weren't seeking out connections with the p

[Oct. ‘12 issue]
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Data
Science in
Traditional

Science

High energy physics - o
Large Hadron Collider

Astronomy -
Sloan Digital Sky survey

Pre-dated commercial mining
Instrument generated

Large data sets often created by large teams not to
answer one Q but to be mined broadly

Often coupled to a physical/biological model
Interplay w/ experiments

Ecology
& Earth Sci.
- Fluxnet

Neuroscience -
The Human Connectome Project

y sequencer

SCIENCEIN THE
PETABYTEERA
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4Ms:

Measurement,
Mining,
Modeling

& Manipulation

TREY IDEKER, L. RAIMOND WINSLOW & A. DOUGLAS
LAUFFENBURGER (’06). “Bioengineering and Systems Biology,” Annals
of Biomedical Engineering DOI: 10.1007/s10439-005-9047-7

Image from http://web.aibn.uq.edu.au/cssb/ResearchProjects.html
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Lampooned but actually very successful
No ability to predict a century ago;
Weather now forecasts checked by billions every day
forecasting Interpretable & useful statistical predictions,
informing everything from clothing choices to commerce

How do they do it?
Physical models & massive sim. useful
(but not sufficient - think “butterfly” effect.)
Large-scale data collection via sensors

Horizontal Grid
(Latitude-Longitude)

Vertical Grid )
(Height or Pressure) |

NOAA CRADA Collaborators
Data Expertise Infrastructure Expertise

Combined forecast via BMA
D ‘%}%
SN
5

b

1964, first climate model

Growth of NOAA's Archive
160 Growth of NOAA's
| wSatelite Archived Satelite Date
= NEXRAD [T
,;20 | . :::::\ Datasets é‘“ feossmany
£ | = Geophysical Datesets fo
1 Mt i, | ” End User Third Party Partner
i gL Wider Consumer Communit Value-Added Services
" —
0 o i i i I I I I

e 2010s, big data project

Fiscal Year

9 = Lect



Biomedical Data Science

* The ambition of & eventually model of the
genome, connectome, organs...

* The recent success of genomics (to highlight) but
maybe a

* How IS integral to the changing landscape

* Using large-scale data as an for
heterogeneous phenotype/medical data



genomic information

F—

Human genome annotation
— a non-intuitive map

ENCrecrorema Or DNA Ecevexrs

S
"\
Y - —
Ze e e\
e :
o % -

geographical information

gV

Habitat information

Height information

Base mapping

e Mutation

Aerial imagery

4. Copy number

Gene expression

Platforms

DNA methylation

MicroRNA

RPPA

« Large-scale organisation
providing an overview of the genome
 Integration of heterogeneous data

Clinical data



Biomed. Data Sci. via Example:
Huge Success in Amassing
Genotype-Phenotype

Relationships

Double
Helix

The discovery
of double helix
by James
Watson and
Francis Crick

Thousand

Genomes
Sequenced By far the
Genome most
Haemophilus detailed
influenzae as catalogue of
the first humap
organism’s genetic
genome variation
completely

sequenced

biobank’

Integrated
health data

Study with over
0.5M
participants
collecting
integrated data
from
genotypes to
phenotypic
details and
clinical
information
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Sequencing Data
Explosion:

Powered by
hyper-exponential
incr. in data &
exponential
increase in
computing
(Moore’s Law)

Cost per Raw Megabase of DNA Sequence

N I H National Human Genome
Research Institute

genome.gov/sequencingcosts

Moore's Law
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Kryder’'s Law and

S-curves
underlying
exponential
growth

* Moore’s & Kryder’s

Laws

- As important as the
increase in computer speed
has been, the ability to
store large amounts of
information on computers is
even more crucial

« Exponential increase
seen in Kryder'’s law
is a superposition of
S-curves for different
technologies

Performance
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~*~ NASA Earth Data
-+ Genomics
+- Cancer Image Database

SequenCing - TOP 500 (Pflops)
cost
reductions

have
resulted in
an explosion
of data
gletd
— Nature
Science re12
7| — Cell 20 ‘
— ’C\;::ome Biology. gl
6- Nat. Biotech ~ f----- 20¢
— ISMEJ sl
g 5| — ;':SSChembio —————— 10
(7] Molecular Ecology
m 0.5
E 4’ ””””””””””””””””””” 00k
5
T R H
° o]
The type of 2 )
sequence data 22 e e

deposited has | ,,,,,,,,,,,,,,,,,,,,,, e

changed as well. L

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

2009 2010 2011 2012 2013 2014 2015
Date
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The changing costs of a sequencing pipeline

= = Sample collection and [ Sequencing Data reduction Downstream

Experimental experimental design W Data management analyses
s design
collection

l 100% _

-
TQ)

management

(Data reduction,
— v —

High-level summaries
(VCF, Peaks, RPKM)

Downstream analyses

—
M, MRF)
eaks, RPKI

(differential expression, 0%~
novel TARS, regulatory Pre-NGS Now Future
G ba) (Approximately 2000)  (Approximately 2010)  (Approximately 2020)

From ‘00 to ~’ 20,

cost of DNA sequencing expt. shifts from
the actual seq. to sample

collection & analysis

[Sboner et al. ( “11), Muir et al. (‘15) Genome Biology]
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The changing costs of a sequencing pipeline

100% _

i !

STQ)

Mapped reads
(BAM, CRAM, MRF)
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= Sample collection and [ Sequencing Data reduction Downstream

Experimental experimental design W Data management analyses
s design
collection

(Data reduction,__,
— v —

High-level summaries
(VCF, Peaks, RPKM)

i 1

Downstream analyses

\

(differential expression, 0% =
novel TARs, regulatory Pre-NGS Now
networks, ...) (Approximately 2000)  (Approximately 2010)

Future
(Approximately 2020)

From ‘00 to ~’ 20,
cost of DNA sequencing expt. shifts from
the actual seq. to sample
collection & analysis

B Labor

3 Instrument depreciation and maintenance
Il Reagents and supplies

3 Indirect costs

[Sboner et al. ( “11), Muir et al. (‘15) Genome Biology]
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The changing costs of a sequencing pipeline

= Sample ion and = " [ Data reduction Downstream

e Experimental experimental design W Data management analyses
ample design
collection
‘ 100% _

Sequencing

Data reduction

High-level summaries
(VCF, Peaks, RPKM)

0%
Pre-NGS Now Future
(Approximately 2000)  (Approximately 2010)  (Approximately 2020)

From ‘00 to ~’ 20,

cost of DNA sequencing expt. shifts from
the actual seq. to sample

collection & analysis
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==}

Alignment algorithms scaling to keep
pace with data generation

18 = Lectures.GersteinLab.org

[Sboner et al. ( “11), Muir et al. (“15) Genome Biology]



The changing costs of a sequencing pipeline
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[Sboner et al. ( “11), Muir et al. (‘15) Genome Biology]
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THE GENOME-WIDE TIDE

Large genome-wide association studies that involve more than
10,000 people are growing in number every year — and their
sample sizes are increasing.

Sample sizes: M More than 200,000 100,000-199,999
M 50,000-99,999 B 10,000-49,999

Cumulative study number

2008 2009 2010 2011 2012 2013 2014 2015 2016
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Basic Science to Medical Practice

Research Initiatives and Biomedical Startups

Large-scale genomics data as a anchor to organize large
amounts of phenotype data — EMRs, wearables..

NATIONAL CANCER INSTITUTE
THE CANCER GENOME ATLAS

TCGA RESULTS & FINDINGS

STARTUPS INITIATIVES

Medical Big Data: Promise and Challenges (Lee and
Yoon , Kidney Res. Clin. Pract., 2017)

!

1.Genomics of disease-focused
cohorts; GWAS [2002-present], TCGA,
PCAWG [2006-present]

2.Integration of genomic data with rich
clinical phenotypes; UKBiobank, All of
Us [2016-present]

3.Integration of genomic data in EMRs
for clinical decision support &
wearables; [Near future]

4.Home-based routine sequencing of
DNA and RNA in blood as part of
preventive care [Speculative future]

FUTURA

21 =



EX of ’omics research on

focused patient cohorts:

Many Yale Researchers
Involved in Neurogenomics

 Involved national initiatives:
psychENCODE, CMG,
BrainSpan, BSMN,
NIDA Neuroproteomics

 Yale investigators:
M Gunel, N Sestan, F Vaccarino, J Noonan,
J Gelernter, A Nairn

* DNA variants, altered protein & RNA levels in brains in
development & various diseases (eg ASD, SCZ)
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Cumulative # of X-ray structures and # exomes

0e+00
l

Trends in data generation point to growing opportunities for leveraging
sequence variants to study structure (and vice versa)

The volume of sequenced exomes is outpacing that of structures, while
solved structures have become more complex in nature.

1e+05
|

8e+04
|

4e+04
|

2e+04
I

1980 1990 2000 2010
Year

Exome data hosted on NCBI Sequence Read Archive (SRA) [Sethi et al. COSB ("15)]

6e+04
|
|
6
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Experimental determination of 3D structures can not keep up with the explosive growth of sequence information
The Electron Microscopy (EM) has emerged as a powerful tool in determining 3D structures

—@— of Sequences (GeneBank)
—@— of Structures (PDB)

1985 1990 1995

2000
Year

2005

2010

20&5

# of Released Structures per Year
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Growing sequence redundancy in the PDB (as evidenced by a reduced pace of novel fold
discovery) offers a more comprehensive view of how such sequences occupy conformational
landscapes — Gene & Struc. Families as main organizing principle

% Increase
0.15 0.20 0.25 0.30
l | | l

0.10
I

0.05
I

0.00
I

I I I I I I I I I I I I
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Year
PDB: Berman HM, et al. NAR. (2000)

CATH: Sillitoe I, et al. NAR. (2015)
[Sethi et al. COSB ("15)] SCOP: Fox NK et al. NAR. (2014)



Core Qs v Creative Use of the Data

Data Exhaust

Metadata

Front End Back end
Core scientific Data collection and Data Exhaust
purposes analysis

Data on
Collaboration,
publication and
Infrastructure

« Data Exhaust = Exploitable byproducts of big
data collection and analysis

 Creative use of Data is key to Data Science !

* Aspects of Privacy but also Science of
Science

[PHOTO: RELAXNEWS; from http://www.lapresse.ca]
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Genomics: as Data Science sub-discipline

» Developing ways of organizing & mining categorizing information on a
large scale

- Very fundamental & early form of "Big Data”, feeding into other enterprises
(classification approach, R)

- Also importing tech. developed in other big data disciplines (Hadoop)

Music Genome l)l‘()it’('l

PANDORA §

E Arts_yﬁ?' Resources for discovering and learning about art EXPLORE DISCOVER
. online CATEGORIES INSTITUTIONS
Education

;.

AN S |

=2t B Rl

Q?ﬁﬁ--u "

o I ™

1
T
-+

)

What is The Art Genome Project? Seven Facts about the
Discovery and Classification System That Fuels Artsy

THE ART GENOME PROJECT
BY MATTHEW ISRAEL, JESSICA BACKUS AND OLIVIA JENE FAGON
FEB 9TH, 2016 5:00 AM
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General Thoughts
on the Course



Elements of Bioinformatics as a discipline

Research

Education

Computational Infrastructure
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Defining Bioinformatics
— by crowd-sourced
judgement

* Bioinformatics

- Related terms

 Biological Data Science

* Bioinformatics & / or / vs
Computational Biology

« Biocomputing
+ Systems Biology

« Qbio
* What are its introductory Level
b oun d aries Advanced Level
— Determini ng the Undergraduate Level
"Support VeCtorS” Graduate Level
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Biomedical = (Molecular) BIOINFORMATICS
Data
Science

Data Mining

Sequence &
Genome Analysis

Other 'omic
& Network Analyses

Medical & Translational
Informatics

3D Structure Analysis

Systems Analysis

32 = Lectures.GersteinLab.org
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What is Bioinformatics?

* (Molecular) Bio - informatics

* One idea for a definition?
Bioinformatics is conceptualizing biology in terms of
molecules (in the sense of physical-chemistry) and
then applying “informatics” techniques (derived
from disciplines such as applied math, CS, and
statistics) to
the information associated with these molecules,
on a

 Bioinformatics is a practical discipline with many

33 =



Class Web Page

GersteinLab.org/courses/452

Assignment #0 Page
goo.gl/BfSpQV
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Office Hours

Right after class &
tomorrow at 10 am
(in Bass 432)

35 -



More details on
Bioinformatics
as a subdiscipline of
Biomedical Data Science



What is Bioinformatics?

* (Molecular) Bio - informatics

* One idea for a definition?
Bioinformatics is conceptualizing biology in terms of
molecules (in the sense of physical-chemistry) and
then applying “informatics” techniques (derived
from disciplines such as applied math, CS, and
statistics) to
the information associated with these molecules,
on a

 Bioinformatics is a practical discipline with many
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What Information to Organize?

Sequences (DNA & Protein)

« 3D Structures
* Network & Pathway Connectivity
* Phylogenetic tree relationships

 Large-scale gene expression & functional
genomics data

* Phenotypic data & medical records....

38 =



What is the Information?

Molecular Biology as an Information Science

* Central Dogma * Central Paradigm
of Molecular Biology for Bioinformatics
DNA Genomic Sequence Information
-> RNA -> mRNA (level)
-> Proteiln -> Protelin Sequence
-> Phenotype -> Protein Structure
-> DNA -> Biological Function

-> Organismal Phenotype

sInformation transfer (MRNA)

Genetic material *Protein synthesis (tRNA/mRNA)
*Some catalytic activity
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Molecular Biology Information - DNA

« Raw DNA Sequence
-4 bases:
AGCT
-~1 K 1n a
gene, ~2 M
1n genome

- ~3 Gb Human

atggcaattaaaattggtatcaatggttttggtcgtatcggccgtatcgtattceccgtgea
gcacaacaccgtgatgacattgaagttgtaggtattaacgacttaatcgacgttgaatac
atggcttatatgttgaaatatgattcaactcacggtcgtttcgacggcactgttgaagtg
aaagatggtaacttagtggttaatggtaaaactatccgtgtaactgcagaacgtgatcca
gcaaacttaaactggggtgcaatcggtgttgatatcgctgttgaagcgactggtttattce
ttaactgatgaaactgctcgtaaacatatcactgcaggcgcaaaaaaagttgtattaact
ggcccatctaaagatgcaacccctatgttcgttcgtggtgtaaacttcaacgcatacgceca
ggtcaagatatcgtttctaacgcatcttgtacaacaaactgtttagctcctttagcacgt
gttgttcatgaaactttcggtatcaaagatggtttaatgaccactgttcacgcaacgact
gcaactcaaaaaactgtggatggtccatcagctaaagactggcgcggcggeccgecggtgea
tcacaaaacatcattccatcttcaacaggtgcagcgaaagcagtaggtaaagtattacct
gcattaaacggtaaattaactggtatggctttccgtgttccaacgccaaacgtatctgtt
gttgatttaacagttaatcttgaaaaaccagcttcttatgatgcaatcaaacaagcaatc
aaagatgcagcggaaggtaaaacgttcaatggcgaattaaaaggcgtattaggttacact
gaagatgctgttgtttctactgacttcaacggttgtgctttaacttctgtatttgatgca
gacgctggtatcgcattaactgattctttcgttaaattggtatc

. caaaaatagggttaatatgaatctcgatctccattttgttcatcgtattcaa
caacaagccaaaactcgtacaaatatgaccgcacttcgctataaagaacacggcttgtgg
cgagatatctcttggaaaaactttcaagagcaactcaatcaactttctcgagcattgcett
gctcacaatattgacgtacaagataaaatcgccatttttgcccataatatggaacgttgg
gttgttcatgaaactttcggtatcaaagatggtttaatgaccactgttcacgcaacgact
acaatcgttgacattgcgaccttacaaattcgagcaatcacagtgcctatttacgcaacc
aatacagcccagcaagcagaatttatcctaaatcacgccgatgtaaaaattctecttegte
ggcgatcaagagcaatacgatcaaacattggaaattgctcatcattgtccaaaattacaa
aaaattgtagcaatgaaatccaccattcaattacaacaagatcctctttcttgcacttgg

40 -



Molecular Biology Information: Protein Sequence

« 20 letter alphabet
- ACDEFGHIKLMNPQRSTVWY but not BJOUXZ

« Strings of ~300 aa in an average protein (in bacteria),
~200 aa in a domain

« >12 M known protein sequences
(uniprot, , 2011)

dldhfa LNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQ-NLVIMGKKTWFSI
d8dfr  LNSIVAVCONMGIGKDGNLPWPPLRNEYKYFQRMTSTSHVEGKQ-NAVIMGKKTWFSI
d4dfra ISLIAALAVDRVIGMENAMPWN-LPADLAWFKRNTL-------- NKPVIMGRHTWESI
d3dfr  TAFLWAQDRDGLIGKDGHLPWH-LPDDLHYFRAQTV-------- GKIMVVGRRTYESF

dldhfa LNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQ-NLVIMGKKTWFSI
d8dfr  LNSIVAVCONMGIGKDGNLPWPPLRNEYKYFQRMTSTSHVEGKQ-NAVIMGKKTWEFSI
d4dfra ISLIAALAVDRVIGMENAMPW-NLPADLAWFKRNTLD--—------— KPVIMGRHTWESI
d3dfr  TAFLWAQDRNGLIGKDGHLPW-HLPDDLHYFRAQTVG---—-----— KIMVVGRRTYESF

dldhfa VPEKNRPLKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPELANKVDMVWIVGGSSVYKEAMNHP
d8dfr  VPEKNRPLKDRINIVLSRELKEAPKGAHYLSKSLDDALALLDSPELKSKVDMVWIVGGTAVYKAAMEKP
d4dfra ---G-RPLPGRKNIILS-SQPGTDDRV-TWVKSVDEAIAACGDVP-—---- EIMVIGGGRVYEQFLPKA
d3dfr  ---PKRPLPERTNVVLTHQEDYQAQGA-VVVHDVAAVFAYAKQHLDQ----ELVIAGGAQIFTAFKDDV

dldhfa_ -PEKNRPLKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPELANKVDMVWIVGGSSVYKEAMNHP

d8dfr  -PEKNRPLKDRINIVLSRELKEAPKGAHYLSKSLDDALALLDSPELKSKVDMVWIVGGTAVYKAAMEKP
d4dfra -G-—--RPLPGRKNIILSSSQPGTDDRV-TWVKSVDEAIAACGDVPE--—-- IMVIGGGRVYEQFLPKA
d3dfr  -P--KRPLPERTNVVLTHQEDYQAQGA-VVVHDVAAVFAYAKQHLD----QELVIAGGAQIFTAFKDDV
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Molecular Biology Information:
Macromolecular Structure

 DNA/RNA/Protein
— Mostly protein

(RNA Adapted From D Soll Web Page,
Right Hand Top Protein from M Levitt web page)

»c o o@leK]
R T T
croofppeoor

GAA cV ccuccY?,
G<: cC6 5
ST CGAGG

URTe
G WE S g # U

POOOO
'

U

u V)
o

‘Identity elements’ in Escherichia coli glutamine tRNA.
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ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
TER

Molecular Biology Information:
Protein Structure Details

« Statistics on Number of XYZ triplets
200 residues/domain => 200 CA atoms, separated by 3.8 A

Avg. Residue is Leu: 4 backbone atoms + 4 sidechain atoms, 150 cubic A
=> ~1500 xyz triplets (=8x200) per

>100K Domains, ~1200 folds (scop 1

W J oUW N

=R e
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1444
1445
1446
1447
1448
1449
1450

CB
CG
CD
CE
NZ
OXT

ACE
ACE
ACE
SER
SER
SER
SER
SER
SER
ARG
ARG
ARG

LYS
LYS
LYS
LYS
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Molecular Biology Information:
Whole Genomes

* The Revolution Driving Everything
FleiSCh ma n n, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F.,

Kerlavage, A. R., Bult, C. J., Tomb, J. F., Dougherty, B. A., Merrick, J. M., McKenney, K., Sutton, G.,

Fitzhugh, W., Fields, C., Gocayne, J. D., Scott, J., Shirley, R., Liu, L. I., Glodek, A., Kelley, J. M., Weidman, J.

F., Phillips, C. A., Spriggs, T., Hedblom, E., Cotton, M. D., Utterback, T. R., Hanna, M. C., Nguyen, D. T.,
Saudek, D. M., Brandon, R. C., Fine, L. D., Fritchman, J. L., Fuhrmann, J. L., Geoghagen, N. S. M., Gnehm,

C. L., McDonald, L. A., Small, K. V., Fraser, C. M., Smith, H. O. & Ve nte r, J.C.
( 1 995) "Whole-genome random sequencing and assembly of

Haemophilus s SCIENCE 205 496512
(Picture adapted from TIGR website, http://www.tigr.org)

* Timeline
1995, HI (bacteria): 1.6 Mb & 1600 genes done
1997, yeast: 13 Mb & ~6000 genes for yeast
1998, worm: ~100Mb with 19 K genes
1999: >30 completed genomes!
2000, draft human
2003, human: 3 Gb & 100 K genes...
2010, 1000 human genomes!
2017, 13K human genomes

44 = Lectures.GersteinLab.org



1995

Bacteria,
1.6 Mb,

~1600 genes
[Science 269: 496]

1997

Eukaryote,
13 Mb,

~6K genes
[Nature 387: 1]

1998

Animal,
~100 Mb,

~20K genes
[Science 282:
1945]

20007

Human,
~3 Gb,
~20K genes

U
Loy
Y

ENCE

$7.00

CI

28 JuLy 1995
VOL. 269 » PAGES 449 604

Human
Genome
Sequence

C. elegans

Sequence to Biology

A

Bioinfo_rmatics

prediction that

came true!

‘98 spoof

real thing, Apr ‘00
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Gene Expression Data:
On & Off

I

RRRRRR
tttttt

« Early experiments yeast

- Complexity at 10 time
points,
6000 x 10 = 60K floats

* Then tiling array
technology

- 50 M data points to tile
the human genome at
~50 bp res.

oooooooooo

junctions

* Now Next-Gen
Sequencing (RNAseq)

- 10M+ reads on the

human genome,

counts

« Can only sequence
genome once but can do
an infinite variety of
expression experiments
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Molecular Networks: Connectivity  Rreguiatory Networks

Get readouts of
where proteins
bind to DNA :
Chip-chip then
chip-seq

ansd‘p“m factorsand ¢, fact,
¢ o,

Protein Interaction
Networks
For yeast: 6000 x
6000/2 ~18M

possible
e gps interactions
Protein-protein Interaction networks TF-target-gene Regulatory networks (maybe ~30K real)

—

[Toenjes, et al, Mol. BioSyst. (2008);
Jeong et al, Nature (2001); [Horak, et al,
. . Genes & Development, 16:3017-3033;
Metabolic pathway networks miRNA-target networks DeRisi, lyer, and Brown, Science,
278:680-686]
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Molecular Biology Information:
Other Integrative Data

* Information to
understand genomes

- Whole Organisms
Phylogeny, traditional
zoology

- Environments, Habitats,
ecology

- Phenotype
Experiments
(large-scale
KOs,

transposons)

- The Literature
(MEDLINE)

 The Future....

(Pathway drawing from P Karp’ s EcoCyc, Phylogeny
from S J Gould, Dinosaur in a Haystack)

glucose -6 -phosphate
Tucese i i
cglucese isomerase: pgi .
5519 T

fructose -6 -phosphate pentose phosphate pathway

ATP—\
6-phosphofructokinase-1: pfl
6-phosphofructokinase-2: pfkB

B 27111
ADPé/

fructose 1,6 -diphosphate

fructese bisphesphate
aldolasedlass I

fructese bisphosphate
aldolase class II: 2

41218

o

hosphate
= glycerald ehyd e S-phesphate "
dehpdrogenase-A complex: 5°F
12112
H
NADH l
ho-D-gl
ADP\
phosphoglycerate Janase: pgk
2723

A’l?é/

3-phosphoglycerate

phosphoglycerate mutase 2: gpmB
phosphoglycerate mutase 1: gpmd
5421

2-phosphoglycerate
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What is Bioinformatics?

* (Molecular) Bio - informatics

* One idea for a definition?
Bioinformatics is conceptualizing biology in terms of
molecules (in the sense of physical-chemistry) and
then applying “informatics” techniques (derived
from disciplines such as applied math, CS, and
statistics) to
the information associated with these molecules,
on a

 Bioinformatics is a practical discipline with many
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TP & [from Heidi S’Of'ia, NHGRI-]
Seq U n'lve F.se # SRA >1 petabyte .

TCGA endpoint: ~2.5 Petabytes
~1.5 PB exome .
~1 PB- whole genome

wor, NERRR
1000 Genomes -« ¢, *.*
# A Deep Catalog of Human Gene})&far{ﬁidn;" A 1

ARRA

Autism 2 O 1 6
B (e TCoA = 2300 TB
. B 1000 Genomes - 222 TB
=1 ADSP - 68 TB
EEE NHGRI LSSP - 40 TB
B GTeX - 34 TB
EEE NHLBI ESP - 32 TB
. : . 1 HWP - 29 TB
Sofia, 2-28-14 " hor 8 E A BEE ARRA Autism - 24 TB

™ ENCODE - 9TB
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What is Bioinformatics?

* (Molecular) Bio - informatics

* One idea for a definition?
Bioinformatics is conceptualizing biology in terms of
molecules (in the sense of physical-chemistry) and
then applying “informatics” techniques (derived
from disciplines such as applied math, CS, and
statistics) to
the information associated with these molecules,
on a

 Bioinformatics is a practical discipline with many
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General Types of

“Informatics” techniques

in Computational Biology
— a mix between mining & modeling

« Databases

- Building, Querying

- Representing Complex data
- Data mining

- Machine Learning techniques

- Clustering & Tree construction

- Rapid Text String Comparison &
textmining

- Detailed statistics of significance
& association

 Network Analysis
- Analysis of Topology (eg Hubs)
- Predicting Connectivity

« Structure Analysis &
Geometry
- Graphics (Surfaces, Volumes)
- Comparison & 3D Matching
(Vision, recognition, docking)
* Physical Modeling
- Newtonian Mechanics
— Minimization & Simulation

- Modeling Chemical Reactions &
Cellular Processes
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Data science analysis stack.

Machine Learning
classification, modeling,
visualization & data Integration

Scalable Algorithms

Streaming, Sampling, Indexing, Parallel

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

Michael C. Schatz Genome Res. 2015;25:1417-1422

© 2015 Schatz; Published by Cold Spring Harbor Laboratory Press
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What is Bioinformatics?

* (Molecular) Bio - informatics

* One idea for a definition?
Bioinformatics is conceptualizing biology in terms of
molecules (in the sense of physical-chemistry) and
then applying “informatics” techniques (derived
from disciplines such as applied math, CS, and
statistics) to
the information associated with these molecules,
on a

 Bioinformatics is a practical discipline with many
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Major Application I: Designing Drugs

« Understanding how structures bind other molecules
» Designing inhibitors using docking, structure modeling
* In silico screens of chemical and protein databases

(A) Docking ”r’

A
¢ \
QA(# pf' Protein of interest

\(Q‘_(qu o

(From left to right, figures adapted from Olsen Group Docking Page at Scripps, Zheng et al. Trends in Pharmacological Sciences 2013)
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[Adapted from Sci. Am.]

Major Application Il: Finding Homologs

— AN EIECEERITTIURED

1 ISOLATE HUMAN DNA SEQUENCE l
GAGAACTGTTTAGATGCAAAATCCACAAGT ...

2 TRANSLATE DNA SEQUENCE INTO AMINO
ACID SEQUENCES

ENCLDAKSTS

3 FIND SIMILAR SEQUENCES IN DATA-

BASES OF MODEL ORGANISM PROTEINS
( reflect great differences;
, smaller variations) 5 FIND DRUG THAT
4 MODEL HUMAN PROTEIN  BINDSTO
HUMAN ..ENCLDAIKST S ... STRUCTUREBASEDON MODELED
KNOWN STRUCTURE OF PROTEIN
k A SIMILAR PROTEIN FROM
FLY - A MODEL ORGANISM
(D. melanogaster) A --.ENSLDAQSTH .. (red area Is encoded by the
> S sequence shown)

WORM ..E N S L DAGATE
(C. elegans)

o

o

YEAST K _ENSIDANATM

(S. cerevisiae)

W, SO, =
BACTERIA ’%...ENSLDAGATR
(E.coli ) -
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Major Application lli:
Customizing treatment in oncology

* |dentifying disease causing mutations in individual
patients

» Designing targeted therapeutics
- e.g. BCR-abl and Gleevec
- Cancer immunotherapies targeting neoantigens

» p\/@ ‘ atb

disease

- — umor-
specific ) .
antigen signals » Cell killing
' + Disrupts micro-
environmen
\

(From left to right, figures adapted from Druker BJ. Blood 2008 and the Lim Lab at UCSF)
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Major Application IV:
Personal Genome Characterization

|dentify mutations in personal genomes.

- SNPs, structural variants

Estimate phenotypic (deleterious or
protective) impact of variants.

Compare one person to wider
population.

Track changes over time.
- Transcriptome studies

- Longitudinal health studies
(e.g. 100K wellness project,
Framingham Heart Study)

AN EXAMINED LIFE

The longitudinal study collected d

ata at daily and three-month

intervals, and allowed personalized interventions -- such as

changes in diet -- as the

BRAIN
What'’s measured:
Sleep patterns

<4 Frequency: Daily
Method: Wrist sensor

HEART

Pulse, physical-activity level
4 Daily

Wrist sensor

study proceeded.

LIVER, LUNGS, BRAIN
& HEART
100 proteins to track
organ health
<4 Every three months
Blood sample

COLON
Microbiome ecology
<4 Every three months
Stool sample

Institute for
Systems Biology

LYMPHATIC SYSTEM

. Immune-cell activity

<4 Every three months
Blood sample

INSULIN SENSITIVITY
Blood glucose

<4 Every three months
Blood sample

CHROMOSOMES
Whole-genome sequence
<4 Atenrollment
Blood sensor

(Figure from Institute for Systems Biology)
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What is Bioinformatics?

* (Molecular) Bio - informatics

* One idea for a definition?
Bioinformatics is conceptualizing biology in terms of
molecules (in the sense of physical-chemistry) and
then applying “informatics” techniques (derived
from disciplines such as applied math, CS, and
statistics) to
the information associated with these molecules,
on a

 Bioinformatics is a practical discipline with many
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Personal Genomics



Personal Genomics
as an an organizing theme for this class

A personal genome can reveal a lot about an individual.
- Disease risks, ancestry, personal traits, etc.

Personal genome annotation combined with multi-omic and longitudinal
health data can inform new links between genotype and phenotype
relevant to an individual and the larger population.

Genomic privacy will become increasingly important as precision
medicine becomes more common.

In this class, we will look at how to identify key genomic variants with
the most impact.

We will also use analysis techniques including systems and network
modeling as well as structural modeling to contextualize and interpret
the mechanisms through which these variants impact health.
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Analyzing Carl Zimmer’s genome

CARLZIMMER'S

AME OF (GENOM

SEASON |

Protein P *gj
Structure |5

Wild-type

TR
Amoiie 2 )'.S?,;s
Ancestry o e
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Personal Omics Profiling

SAMPLE TYPE METHOD ANALYSES
N Eam\t
¥itiolo Genome Variant Calling / Phasing  [=> ' / o
Sequencing / fo \\
— g o}
Heteroallelic & Variant o Z [ #” . -
Expression =~ [= L
Whole Transcriptome g { e "
PBMC > Sequencing > RNA-Editing —> =
(mRNA and miRNA) J”; / e
Quantitative Differential — °s, °
Expression & Dynamics =5 m Si’;’;‘é’:‘K/‘” ii"w :%
O SR
. Variant Confirmation in U o .
Proteome Profiling RNA and Protein —> m 77—4 =
A .
Untargeted Proteome .| Quantitative Differential N w o b
Profiling Expression & Dynamics O | ?ji
)Z> PO I
Targeted Proteome . i . B B
Profiling (Cytokines) > Quantitative Expression > g —
AR A4
Serum > Metabolome Profiling > Dynamics —> 6
\ &h T ltﬂ l
A“t°'§:‘gf?l?:g°me >  Differential Reactivity [~ —
2 8 .
Medical / Lab Tests p Glucoss, HEATL, CRR,
Telomere Length
14

(Figure from Chen et al

RNA Edits

Heteroallelic SNVs

Protein-Downregulated
(HRV vs Healthy)

Protein-Upregulated
(HRV vs Healthy)

RNA-Downregulated
(HRV vs Healthy)

RNA-Upregulated
(HRV vs Healthy)

Indels
SV-Duplications

SV-Deletions

Chr. Ideogram

Chr. Number

. Cell 2012)
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Personal Genome Project

Sharing Personal Genomes

The Personal Genome Project was founded in 2005 and is dedicated to creating public genome,
health, and trait data. Sharing data is critical to scientific progress, but has been hampered by
traditional research practices—our approach is to invite willing participants to publicly share their
personal data for the greater good.

Learn more >

Pipeline: enrolled — samples collected — WGS data published

10K

Participants enrolled

Participants with samples collected

Il Participants with published WGS data
1K
100
10
0
2011 2012 2013 2014 2015 2016 2017
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Data Types in the Personal Genome Project

Number of participants per data type

1K

100

10

Bio'qeuieisien sainioe . 99

Complete Genomics
23andMe

M lllumina

Il Family Tree DNA
Ml Veritas Genetics

I Pathway genomics

2017

2016

2015

Conditions

2014

2013

2012
I
=

2011

Il Counsyl
Il Knome
>
=~

QS

71 Navigenics
Il DeCode

Aouenbaiy

(7 Y Yo
—- ou, D, 00,6
(=P )
- 5 0
b .@o&S \,C.@xw
IRy oy hogy Ty,
. N “on,

100 +



Human Genetic Variation

A Cancer Genome
[ ]

A Typical Genome
o

2 -

T

Population of
2,504 peoples

Origin of Variants Class of Variants

Coding Non- 3.5-4.3M 84.7M
codin
9 550 — 625K 3.6M
21-25K 60K
20Mb
Somatic | ~50 5K RN ( ) 88.3M
4.1 —5M

Prevalence of Variants

G-

Driver (~0.1%) Rare* (1-4%) Rare (~75%)

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108
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Association of Variants with

Diseases

c
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Variants

High
© Function

Impact
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Variants
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GWAS Positive

Burden Test



Extra stuff related
to 1st Assignment



Class Web Page

GersteinLab.org/courses/452

Assignment #0 Page
goo.gl/BfSpQV
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Are They or Aren’ t They
Comp. Bio.? (#1 )

. ( Digital Libraries & Medical Record Analysis

- Automated Bibliographic Search and Textual
Comparison

- Knowledge bases for biological literature
o ( Motif Discovery Using Gibb's Sampling
e ( Methods for Structure Determination
- Computational Crystallography
« Refinement

- NMR Structure Determination
o ( Distance Geometry

o ( Metabolic Pathway Simulation
o ( The DNA Computer
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Are They or Aren’ t They
Comp. Bio.? (#1, Answers)

« (YES?) Digital Libraries & Medical Record Analysis

- Automated Bibliographic Search and Textual
Comparison

- Knowledge bases for biological literature
- (YES) Motif Discovery Using Gibb's Sampling
e (NO?)

« (YES) Distance Geometry
« (YES) Metabolic Pathway Simulation
* (NO)

72 =



Are They or Aren’ t They

Comp. Bio.? (#2 )
o ( Gene identification by sequence characteristics
- Prediction of splice sites
e ( DNA methods in forensics
. ( Modeling of Populations of Organisms

- Ecological Modeling (predator & prey)
o ( Modeling the nervous system
- Computational neuroscience

- Understanding how brains think & using this to make
a better computer

.« ( Molecular phenotype discovery — looking for
gene expression signatures of cancer

- What if it included non-molecular data such as age ?



Are They or Aren’ t They
Comp. Bio.? (#2, Answers)

« (YES) Gene identification by sequence characteristics

- Prediction of splice sites
- (YES) DNA methods in forensics

* (NO)

 (NO?)

- (YES) Molecular phenotype discovery — looking for
gene expression signatures of cancer

- What if it included non-molecular data such asage ?



(
(

Are They or Aren’ t They
Comp. Bio.? (#3 )

RNA structure prediction
Radiological Image Processing

- Computational Representations for Human
Anatomy (visible human)

(

Artificial Life Simulations

- Artificial Immunology / Computer Security

- (

N N N N N

Genetic Algorithms in molecular biology
Homology Modeling & Drug Docking
Char. drugs & other small molecules (QSAR)
Computerized Diagnosis based on Pedigrees
Processing of NextGen sequencing image files
Module finding in protein networks
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Are They or Aren’ t They
Comp. Bio.? (#3, Answers)

« (YES) RNA structure prediction
* (NO)

* (NO)

- (NO?)
« (YES) Homology Modeling & Drug Docking
« (YES) Char. drugs & other small molecules (QSAR)
* (NO)
* (NO)
* (YES)
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