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Transcriptome Mining: 
Tackling core issues related to gene regulation 

& also analyzing the "data exhaust" associated with this activity 

Mark Gerstein, Yale. Slides freely downloadable from Lectures.GersteinLab.org
& “tweetable” (via @markgerstein). See last slide for more info.



Transcriptome = Gene Activity of All Genes in the Genome, 
usually quantified by RNA-seq

Genes (DNA)

RNA 
transcripts

Protein 
coding 
mRNA

Proteins

Non-coding 
regulatory 

RNAs

Regulation
Transcription

Translation
Gene Expression 
measured by RNA-seq

[ NATURE 459: 927; NAT. REV. GEN. 10: 57 ]   
Expression of genes is quantified by transcription: 
RNA-Seq measures mRNA transcript amounts
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ATACAAGCAAGTATAAGTTCGTATGCCGTCTT
GGAGGCTGGAGTTGGGGACGTATGCGGCATAG
TACCGATCGAGTCGACTGTAAACGTAGGCATA
ATTCTGACTGGTGTCATGCTGATGTACTTAAA
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Fastq sequence files
~5-10 GB

[NAT. REV. 10: 57; PLOS CB 4:e1000158; PNAS 4:107: 5254 ]

Quantitative information from RNA-seq signal: 
average signals at exon level (RPKMs)

Reads => Signal

BAM files
~1-2-fold reduction

Index-building + Alignment to reference genome

BigWig files
~25-fold reduction

Conversion to signal track by overlapping reads

Gene/Transcript 
expression matrix
~20-fold reduction

Mapping 
to genes

RNA-Seq Overview
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Activity Patterns • RNA Seq. gives rise to activity patterns 
of genes & regions in the genome
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Some Core Science Qs Addressed by RNA-seq

• Gene activity as a function of:
- Developmental stage: basic patterns of co-active genes across 

development
- Cell-type & Tissue: relationship to specialized functions
- Evolutionary relationships: behavior preserved across a wide 

range of organisms; patterns in model organisms in relation to 
those in humans 

- Disease phenotypes: disruption of patterns in disease

• Our overarching Qs: 
Are there core, ancient patterns of gene expression? 
Are they associated with development? 
Are they disrupted by disease?
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Studying large-scale transcriptome data 
also produces 

Data Exhaust

• Data Exhaust = Exploitable byproducts of big data 
collection and analysis

• Creative use of Data is key to Data Science !
[PHOTO: RELAXNEWS; from http://www.lapresse.ca]

Data collection and 
analysis

Front End
Core scientific 

purposes
Data Exhaust

Back end

Metadata

Data on 
Collaboration, 

publication and 
Infrastructure



Transcriptome Mining: Tackling core issues related to gene regulation 
& also analyzing the "data exhaust" associated with this activity 

• [Core-1] Expression Clustering, 
Cross-species 
- Comparative ENCODE – Lots of 

worm-fly-human matched data & 
developmental timecourses

- Optimization gives 16 conserved co-
expression modules, 12 w/ hourglass

• [Core-2] State Space Models 
of Gene Expression
- Using dimensionality reduction to help 

determine internal & external drivers; 
Decoupling expression changes into 
those from conserved vs species-
specific genes

- Conserved genes have similar 
canonical patterns (iPDPs) in contrast 
to species specific ones (Ex of 
ribosomal v signaling genes)

• [Core-3] Logic Gates Modeling
- Preponderance of OR gates in cancer 

v. cell-cycle (esp. for MYC) 

• [Exhaust-1] Genomic Privacy 
& RNA-seq
- The dilemma: The genome as fundamental, 

inherited info that’s very private v need for 
large-scale mining for med. research

- 2-sided nature of RNA-seq presents a 
particularly tricky privacy issue

- Using file formats to remove obvious variants
- Quantifying & removing further variant info 

from expression levels + eQTLs using ICI & 
predictability

- Instantiating a practical linking attack using 
extreme expression levels

• [Exhaust-2] Publication Patterns from 
data producing consortia
- Co-authorship network statistics relate to 

publication rollouts & show gradual adoption 
by a diverse community

- Key role of brokers in data dissemination
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ENCODE Time-course gene expression 
data of worm & fly development + human conditions

• Broad sampling of conditions across 
transcriptomes for human, worm & fly

– embryo & ES cells
– developmental time course 

(worm-fly)
• In total: ~3000 datasets 

(~130B reads)

Organism Major developmental stages

worm 
(C. elegans)

33 stages: 0, 0.5, 1, …, 12 hours, L1, L2, L3, 
L4, …, Young Adults, Adults

fly
(D. mel.)

30 stages: 0, 2, 4, 6, 8,…, 20, 22 hours, L1-
L4, Pupaes, Adults

[N
at
ur
e
51

2:
44

5	
('1

4)
;		
do

i:	
10

.1
03

8/
na
tu
re
13

42
4]

Comparative	ENCODE	Functional	Genomics	Resource
(EncodeProject.org/comparative)
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Expression clustering: 
revisiting an ancient problem
Species A

two independent sets 
of modules

co-expressed genes 
responsible for the same 
function in a species

Clustering 
algorithm

Clustering 
algorithm

Species B

Eisen MB et al. PNAS 1998
Langfelder P et al. BMC Bioinfo. 2008
Tamayo P et al. PNAS 1999
Kluger Y et al. Genome Res. 2003
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Expression clustering: 
revisiting an ancient problem
Species A Species BOrthologous pairs 

between species

cross species modules

OrthoClust

A novel unified framework to integrate co-
expression data across species

Yan et al. Genome Biol. 2014
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Network modularity

Newman Phy. Rev. E 2013

number of edges

degree of node i

expected number of 
edges between i and j

whether or not
i, j are in the 
same module

adjacency matrix
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Network modularity

number of edges expected number of 
edges between i and j

whether or not
i, j are in the 
same module

adjacency matrix
degree of node i



1
4

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Network modularity

number of edges expected number of 
edges between i and j

whether or not
i, j are in the 
same module

adjacency matrix

Optimization 
problem
for sim. 
annealing degree of node i
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A toy example [orthoclust]

Every	node	i is	assigned	with	a	label	σi (labels	of	modules:	1,2,…q).	

1

2

3
2

4
1

1

3
2

4

4

1

2

4
1

3

4

Species	A

Species	B

co-expressed

orthologs

reward	an	
orthologous	
pair	
with	the	
same	value

H = −Wij
(A) + pij

(A)( )δσ iσ j
i, j
∑ + −W

i' j '
(B) + p

i' j '
(B)( )δσ

i'
σ
j'

i' , j '
∑ −κ δσ iσ j'

(i, j ')∈Ortho
∑

[Y
an

 e
t a

l. 
G

en
om

eB
io

l1
5:

R
10

0 
('1

4)
] 

Favorableness =   "Modularity" in species A    +       "Modularity" in species B            + consistency betw. A & B

Q(for all σi in	A)     +    Q(for all σi in	B) +
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A toy example [orthoclust]

2

2

2
2

2
4

1

4
4

4

4

4

4

4
1

1

1

Species	A

Species	B

co-expressed

orthologs

species	A	specific conserved	modules species	B	specific

Use	Potts	model	(generalized	Ising model)	to	simultaneously	cluster	co-expressed	
genes	within	an	organism	as	well	as	orthologs shared	between	organisms.	Here,	the	
ground	state	configuration	correspond	to	three	modules:	1,	2,	4.

[Y
an

 e
t a

l. 
G

en
om

eB
io

l1
5:

R
10

0 
('1

4)
] 
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Application for more than 2 
species

~55000 genes
[Nature 512:445	('14);		doi:	10.1038/nature13424]
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Conserved modules exhibit canonical hourglass behavior

Illustrations courtesy Naoki Irie

Phylotypic stage

Canonical Inter-organism Behavior
• “Hourglass hypothesis”: all organisms go through a particular 

stage in embryonic development ("phylotypic" stage) where 
inter-organism expression differences of orthologous genes are 
smallest.

• 12 out of our 16 modules have this behavior

[Nature 512:445	('14);		doi:	10.1038/nature13424]
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Is gene regulation among orthologs conserved?

Species	A

Species	B

orthologs co-expressed

Regulation among orthologs (internal)
Regulation from species-specific factors (external)

Orthologous genes (orthologs)
Species-specific transcription factors

To what degree can’t 
ortholog expression 
levels be predicted 
due to species-specific 
regulation?

[W
an
g	
et
	a
l.	
PL
O
S	
CB

,‘
16

]

With External force Purely Internal Dynamics
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Xt+1 Xt A Ut B 

!A =WX
*AWX

!B =WX
*BWU

!Xt+1
!A !Xt

!B !Ut

State-space model for internal 
and external gene regulatory networks

• State Xt: Gene expression vector of 
internal group at time t

• Aij captures temporal casual 
influence from Gene i to Gene j in 
internal group

• Bkl captures temporal casual 
influence from external factor k to 
Gene l in internal group

• Control Ut: Gene expression vector 
of external factors at time t

[Wang	et	al.	PLOS	CB, ‘16]
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Xt+1 Xt A Ut B 

!A =WX
*AWX

!B =WX
*BWU

!Xt+1
!A !Xt

!B !Ut

Effective state space model for meta-genes
(e.g., 250 time points to estimate 50 matrix elements if 
5 meta-genes)

Not enough data to estimate state 
space model for genes 
(e.g., 25 time points per gene to estimate 4 
million elements of A or B for 2000 genes)

Dimensionality reduction from 
genes to meta-genes (e.g., SVD)

[Wang	et	al.	PLOS	CB, ‘16]

State-space model for internal 
and external gene regulatory networks
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Canonical temporal expression trajectories from effective 
state space model

pth internal principal dynamic pattern 
(iPDP): [λp

1
, λp

2, …, λp
T],

where λp is pth eigenvalue of Ã.

Canonical temporal expression trajectories
(e.g., degradation, growth, damped oscillation, etc.) 

timeiP
D

P
ex

pr
es

si
on

Xt+1 Xt A Ut B 

!A =WX
*AWX

!B =WX
*BWU

!Xt+1
!A !Xt

!B !Ut

[Wang	et	al.	PLOS	CB, ‘16]

Is a std. 1st order 
homogeneous matrix 
difference equation. It 
can solved by 
diagonalizing A giving….
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B. Dimensionality Reduction

time

G
en

es
of

 X

X X

M
et

a-
ge

ne
s 

of
 X

time

G
en

es
of

 U

U
U

time M
et

a-
ge

ne
s 

of
 U

Internal genes/meta-genes External genes/meta-genes

Internal regulation among internal genes/meta-genes by A/Ã

External regulation from external genes/meta-genes to internal 
genes/meta-genes in Group X by B/ !B

A. Gene state-space model C. Meta-gene state-space model

Xt+1=AXt+BUt

time

D. Internal/External Principal 
Dynamic Patterns (PDPs)

[λp
1
, λp

2, …, λp
T]

xEXT =    d1      +d2

+d3 +d4

E. Gene’s internal (INT) and external 
(EXT) driven expression dynamics 
composed of PDPs

xINT =   c1                  +c2                  

+c3 +c4

Xt+1 = AXt +BUt
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[Wang	et	al.	PLOS	CB, ‘16]
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Signaling

Worm Fly

p<8.3e-4
p<5.6e-11

p<2.6e-13
p<2.2e-16

Evolutionarily conserved & younger genes exhibit the 
opposite internal & external PDP coefficients

Ribosomal genes have significantly larger coefficients for the internal 
than external PDPs, but signaling genes exhibit the opposite trend

[Wang	et	al.	PLOS	CB, ‘16]
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Human-specific 
TFs respond 

more strongly 
to hormonal 
stimulation 
during cell-
cycle than 
conserved 

genes in breast 
cancer cell

• Applied to Breast Cancer Cell Cycle 
(2 periods) under hormonal stim.
- INT = conserved human genes

• ~1100 H-F-W orthologs
• follow normal cell cycle

-EXT = human spec TFs
• diff from above
• perhaps responding to stimulation

iPDPs

ePDPs



Transcriptome Mining: Tackling core issues related to gene regulation 
& also analyzing the "data exhaust" associated with this activity 

• [Core-1] Expression Clustering, 
Cross-species 
- Comparative ENCODE – Lots of 

worm-fly-human matched data & 
developmental timecourses

- Optimization gives 16 conserved co-
expression modules, 12 w/ hourglass

• [Core-2] State Space Models
of Gene Expression
- Using dimensionality reduction to help 

determine internal & external drivers; 
Decoupling expression changes into 
those from conserved vs species-
specific genes

- Conserved genes have similar 
canonical patterns (iPDPs) in contrast 
to species specific ones (Ex of 
ribosomal v signaling genes)

• [Core-3] Logic Gates Modeling
- Preponderance of OR gates in cancer 

v. cell-cycle (esp. for MYC) 

• [Exhaust-1] Genomic Privacy
& RNA-seq
- The dilemma: The genome as fundamental, 

inherited info that’s very private v need for 
large-scale mining for med. research

- 2-sided nature of RNA-seq presents a 
particularly tricky privacy issue

- Using file formats to remove obvious variants
- Quantifying & removing further variant info 

from expression levels + eQTLs using ICI & 
predictability

- Instantiating a practical linking attack using 
extreme expression levels

• [Exhaust-2] Publication Patterns from 
data producing consortia
- Co-authorship network statistics relate to 

publication rollouts & show gradual adoption 
by a diverse community

- Key role of brokers in data dissemination
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Modeling cooperativity between 
TFs to target gene using logic gates

Input type 
(RF1, RF2)

RF1 0 0 1 1
RF2 0 1 0 1

Output T X X X X

RF1

RF2

T?

2-input-1-output logic gate

00110101…

10110101…

01110111…

X can be 0 or 1, so there are 24=16 possible 
output combinations, each of which corresponds 
to a unique 2-input-1-output logic gate

Binarized
expression

…

A regulatory triplet

RF1

RF2
T

10110101…

10110101…
00110101…

0 – gene off 
1 – gene on
after binarizing gene 
expression data*

*BoolNet, R package
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An example: selection of the best-matched logic gate

Gene 20 samples

RF1=TF 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

RF2=TF 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

T=Gene 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1

0

0

0 1

0

1

0 1

1

0

0 1

1

1

0 1

RF1

RF2

T

5 0 4            1 5            0 1            4

RF1=TF 1 0 0 1 1

RF2=TF 2 0 1 0 1

T=Gene 1 0 0 0 1

AND

TF2TF1

Gene 1

Consistency score:

6/7*5/7*6/7*5/7 = 0.37

s1=(5+1)/(5+2)
=6/7

s2=(4+1)/(5+2)
=5/7

s4=(4+1)/(5+2)
=5/7

s3=(5+1)/(5+2)
=6/7

RF1

TF1
RF2

TF2

T
Gene 1

Laplace’s rule of succession
s=(# of selected output state for 
the input type + 1)
/(# of input type + 2)

Consistency score:
6/7*5/7*6/7*5/7=0.37

Wang, et al., PLoS Computational Biology, 2015
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Triplet 
ID

RF1 RF2 Common 
Target 
Gene (T)

Matched 
logic gate

1 YHR084W YBR083W YBR082C AND 

2 YKL112W YIL131C YMR198W OR 

… … … … …

39011 YOR113W YBL103C YDR042C XOR 
Nu

m
be

r o
f g

at
e-

co
ns

ist
en

t t
rip

le
ts

T=
0

AN
D

RF
1*

~R
F2 RF

1

~R
F1

*R
F2 RF

2

XO
R

O
R

NO
R

XN
O

R

~R
F2

RF
1+

~R
F2

~R
F1

~R
F1

+R
F2

NA
ND T=

1

0

200

400

600

800

RF1 RF2 Common 
Target Gene 
(T)

Matched 
logic gate

YML113W YBR083W

YER189W AND

YER190W AND

YLR463C AND

YNL337W AND

YLR467W AND

RF1 RF2 Common 
Target Gene 
(T)

Matched
logic gate

YMR037C YOR344C

YER177W NONE

YGR192C NONE

YKL060C NONE

YAL060W NONE

YDR042C NONE

RF1 RF2 Common 
Target Gene 
(T)

Matched  
logic gate

YKL015W YKL032C

YLL033W T=~RF1*RF2

YLL034C T=~RF1*RF2

YLR143W T=RF1*~RF2

YMR177W AND

RF1-RF2 pairs with preserved matched 
logic gate across targets

RF1-RF2 pairs with varied matched logic 
gate(s) across targets

RF1-RF2 pairs without matched logic gate

Yeast Cell Cycle

A B

1 1

2 2

3 34 4

RF1

TF1
RF2

TF2

T
All common gene

targets

Regulatory triplets

i symetric gates
i=1, 2, 3, 4

App. 1 – TF cooperativity in the cell cycle

Triplet 
ID

RF1 RF2 Common 
Target 
Gene (T)

Matched 
logic gate

1 YHR084W YBR083W YBR082C AND 

2 YKL112W YIL131C YMR198W OR 

… … … … …

39011 YOR113W YBL103C YDR042C XOR 
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r o
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rip
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ts
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logic gate

YML113W YBR083W

YER189W AND
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YNL337W AND

YLR467W AND

RF1 RF2 Common 
Target Gene 
(T)

Matched
logic gate

YMR037C YOR344C

YER177W NONE

YGR192C NONE

YKL060C NONE

YAL060W NONE

YDR042C NONE

RF1 RF2 Common 
Target Gene 
(T)

Matched  
logic gate

YKL015W YKL032C

YLL033W T=~RF1*RF2

YLL034C T=~RF1*RF2

YLR143W T=RF1*~RF2

YMR177W AND

RF1-RF2 pairs with preserved matched 
logic gate across targets

RF1-RF2 pairs with varied matched logic 
gate(s) across targets

RF1-RF2 pairs without matched logic gate

Yeast Cell Cycle

A
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1 1
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3 34 4

RF1

TF1
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T
All common gene

targets

Regulatory triplets

i symetric gates
i=1, 2, 3, 4

Figure 3

Target 
gene

2464

TF 176

Triplet 39,011

Time point 59

AND-like gates

Wang, et al., PLoS Computational Biology, 2015



Acute	Myeloid	Leukemia	(AML)

Target	gene 1824 ENCODE	Data (K562,	ChIP-seq)

TF 70

Regulatory	
triplet

50,865 TCGA	Data (AML,	level	3,	RNA-seq)
https://tcga-
data.nci.nih.gov/tcga/tcgaDownload.jsp

Patient
sample

197

Wang, et al., PLoS Computational Biology, 2015
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RF1 RF2 Common 
Target 
Gene (T)

Matched
logic gate

ATF3 BDP1 YPEL1 AND

MYC BCL3 BCR T=RF1

ATF3 BRF2 AIF1L AND

… … … …

Human TF-TF-target

0

500

1000

1500

2000

2500A

RF1 RF2 Common 
Target 
Gene (T)

Matched 
logic gate
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Cancer-related TF, MYC, 
universally amplifies target expression
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SUMMARY

The c-Myc HLH-bZIP protein has been implicated in
physiological or pathological growth, proliferation,
apoptosis, metabolism, and differentiation at the
cellular, tissue, or organismal levels via regulation
of numerous target genes. No principle yet unifies
Myc action due partly to an incomplete inventory
and functional accounting of Myc’s targets. To
observe Myc target expression and function in a
system where Myc is temporally and physiologically
regulated, the transcriptomes and the genome-wide
distributions of Myc, RNA polymerase II, and chro-
matin modifications were compared during lympho-
cyte activation and in ES cells as well. A remarkably
simple rule emerged from this quantitative analysis:
Myc is not an on-off specifier of gene activity, but is
a nonlinear amplifier of expression, acting universally
at active genes, except for immediate early genes
that are strongly induced before Myc. This rule of
Myc action explains the vast majority of Myc biology
observed in literature.

INTRODUCTION

The c-Myc oncogene, identified three decades ago, is associ-
ated with many human cancers (Dang, 2010; Wasylishen and
Penn, 2010). Numerous chromatin and transcription regulating
factors interact with Myc (Cheng et al., 1999; Cowling and
Cole, 2006; Eilers and Eisenman, 2008; Rahl et al., 2010; Wasy-
lishen and Penn, 2010). mRNA expression and DNA-binding
studies, in vitro and in vivo, have nominated an ever increasing
number of genes as Myc targets including a core constituting
a Myc signature (Ji et al., 2011; Margolin et al., 2009; Shaffer
et al., 2006; Wasylishen and Penn, 2010). However, no single
subset of Myc targets accounts for its oncogenic activity (Berns
et al., 2000; Nikiforov et al., 2002); the diversity of Myc targets

between systems, has further confounded the explication of
discrete, linear pathway(s) for Myc-driven neoplasia.
Myc is often associated with cell activation. Typically a pulse

of Myc is induced starting from a very low baseline during
the G0–G1 transition or in response to numerous signals and
stresses (Rabbitts et al., 1985). Thereafter, in steady-state
cycling cells, c-myc output is stably maintained. In some sett-
ings, a second Myc peak ensues 12–24 hr later (Kelly et al.,
1983; Nepveu et al., 1987; Tonini et al., 1987). The relationship
between Myc targets in these primary and secondary peaks
has not been investigated. Although Myc pathology has been
extensively studied in lymphoid neoplasms, including Burkitt
lymphoma, large cell lymphoma,multiple myeloma, and plasma-
cytoma, Myc action in primary lymphocytes, has been less
studied making it difficult to compare the physiological versus
pathological Myc networks. Because most cancer lines or trans-
genic models do not recapitulate the physiologic regulation of
Myc expression (Levens, 2010), we decided to investigate Myc
function in primary lymphocytes by using a mouse line that fuses
endogenousMyc to enhanced green fluorescent protein (EGFP).
TheMyc network was then interrogated in related but physiolog-
ically distinct situations, and the profiles of global gene expres-
sion and of Myc binding to its target genes were examined.
The genome-wide patterns ofMyc recruitment, RNA polymerase
binding and chromatin modifications were overlaid to reveal the
dynamics of Myc upregulation and its relationship to lymphocyte
gene expression. These same genome-wide patterns were
assessed in ES cells to gain insight into the cell-type- and differ-
entiation-specific roles of c-Myc. Putting these data together
revealed that physiologically, Myc is not an on-off specifier of
a particular transcriptional program(s) but is a universal amplifier
of gene expression increasing output at all active promoters.
This rule predicts and explains many features of Myc biology.

RESULTS

A Model to Study Physiological Myc Function
EGFP was homologously recombined with c-myc exon 3 in
mouse ES cells (Figure S1A available online) to provide a tag

68 Cell 151, 68–79, September 28, 2012 ª2012 Elsevier Inc.

High expression of MYC is sufficient 
for high target gene expression
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Figure 5A

Restrict to RF1=MYC, giving 2,153  triplets

Wang, et al., PLoS Computational Biology, 2015
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Transcriptome Mining: Tackling core issues related to gene regulation 
& also analyzing the "data exhaust" associated with this activity 

• [Core-1] Expression Clustering, 
Cross-species 
- Comparative ENCODE – Lots of 

worm-fly-human matched data & 
developmental timecourses

- Optimization gives 16 conserved co-
expression modules, 12 w/ hourglass

• [Core-2] State Space Models
of Gene Expression
- Using dimensionality reduction to help 

determine internal & external drivers; 
Decoupling expression changes into 
those from conserved vs species-
specific genes

- Conserved genes have similar 
canonical patterns (iPDPs) in contrast 
to species specific ones (Ex of 
ribosomal v signaling genes)

• [Core-3] Logic Gates Modeling
- Preponderance of OR gates in cancer 

v. cell-cycle (esp. for MYC) 

• [Exhaust-1] Genomic Privacy
& RNA-seq
- The dilemma: The genome as fundamental, 

inherited info that’s very private v need for 
large-scale mining for med. research

- 2-sided nature of RNA-seq presents a 
particularly tricky privacy issue

- Using file formats to remove obvious variants
- Quantifying & removing further variant info 

from expression levels + eQTLs using ICI & 
predictability

- Instantiating a practical linking attack using 
extreme expression levels

• [Exhaust-2] Publication Patterns from 
data producing consortia
- Co-authorship network statistics relate to 

publication rollouts & show gradual adoption 
by a diverse community

- Key role of brokers in data dissemination
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2-sided nature of functional 
genomics data: Analysis can be 

very General/Public
or Individual/Private

• General quantifications related to overall aspects 
of a condition – ie gene activity as a function of:
- Developmental stage, Evolutionary relationships, Cell-type, Disease

• Above are not tied to an individual’s genotype. However, data is 
derived from individuals & tagged with their genotypes

• (Note, a few calculations aim to use explicitly genotype to derive general 
relations related to sequence variation & gene expression - eg allelic activity)
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Genomics has similar 
"Big Data" Dilemma in 

the Rest of Society

• Sharing & "peer-
production" is central to 
success of many new 
ventures, with the same 
risks as in genomics
-EG web search: Large-

scale mining essential

• We confront privacy 
risks every day we 
access the internet

[Seringhaus & Gerstein ('09), Hart. Courant (Jun 5); Greenbaum & Gerstein ('11), NY Times (6 Oct)]
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Tricky	Privacy	Considerations	in	Personal	Genomics

• Genetic 
Exceptionalism : 
The Genome is very 
fundamental data, 
potentially very 
revealing about one’s 
identity & 
characteristics

• Personal Genomic 
info. essentially 
meaningless 
currently but will it 
be in 20 yrs? 50 yrs?
- Genomic sequence 

very revealing about 
one’s children. Is true 
consent possible?

- Once put on the web 
it can’t be taken back 

• Culture Clash:
Genomics historically has been a 
proponent of “open data” but not clear 
personal genomics fits this. 
- Clinical Medline has a very different 

culture.
• Ethically challenged history of genetics 
- Ownership of the data & what consent 

means (Hela)
• Could your genetic data give rise to a 

product line? 

[D Greenbaum & M Gerstein (’08). Am J. Bioethics; D Greenbaum & M Gerstein, Hartford Courant, 10 Jul. '08 ; SF Chronicle, 2 Nov. '08; 
Greenbaum et al. PLOS CB (‘11) ; Greenbaum & Gerstein ('13), The Scientist; Photo from NY Times]
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The Other Side of the Coin:
Why we should share

• Sharing helps speed research
- Large-scale mining of this information is 

important for medical research
- Privacy is cumbersome, particularly for big 

data
• Sharing is important for reproducible research
• Sharing is useful for education
- More fun to study a known person’s genome 

• Eg Zimmer’s Game of Genomes in STAT 
[Yale Law Roundtable (‘10). Comp. in Sci. & 
Eng. 12:8; D Greenbaum & M Gerstein (‘09). 
Am. J. Bioethics; D Greenbaum & M Gerstein 
(‘10). SF Chronicle, May 2, Page E-4; 
Greenbaum et al. PLOS CB (‘11)]
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The Dilemma

• The individual (harmed?) v the collective (benefits)
- But do sick patients care about their privacy?

• How to balance risks v rewards - Quantification
- What is acceptable risk? 

Can we quantify leakage?
• Ex: photos of eye color

- Cost Benefit Analysis

[Economist, 15 Aug ‘15]
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Current Social & Technical Solutions

• Closed Data Approach
- Consents
- “Protected” distribution via dbGAP
- Local computes on secure computer

• Issues with Closed Data
- Non-uniformity of consents & paperwork

• Different international norms, leading to 
confusion

- Encryption & computer security creates 
burdensome requirements on data 
sharing & large scale analysis

- Many schemes get “hacked”

• Open Data
- Genomic "test pilots” 

(ala PGP)?
• Sports stars & 

celebrities?

- Some public data & 
data donation is 
helpful but is this a 
realistic solution for 
an unbiased sample 
of ~1M

[Greenbuam et al ('04), Nat. Biotech; Greenbaum & Gerstein ('13), The Scientist]
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Strawman Hybrid Social & Tech Proposed Solution?

• Fundamentally, researchers 
have to keep genetic secrets.
- Need for an (international) 

legal framework
- Genetic Licensure & training 

for individuals 
(similar to medical license, 
drivers license)

• Technology to make things 
easier
- Cloud computing & enclaves 

(eg solution of Genomics 
England)

• Technological barriers 
shouldn't create a social 
incentive for “hacking”

• Quantifying Leakage & 
allowing a small amounts of it 

• Careful separation & coupling 
of private & public data 
- Lightweight, freely accessible 

secondary datasets coupled 
to underlying variants 

- Selection of stub & "test pilot" 
datasets for benchmarking

- Develop programs on public 
stubs on your laptop, then move 
the program to the cloud for 
private production run

[D Greenbaum, M Gerstein (‘11). Am J Bioeth 11:39. Greenbaum & Gerstein, The Scientist ('13)]
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Representative Expression, Genotype, eQTL
Datasets

• Genotypes are available from the 1000 Genomes 
Project

• mRNA sequencing for 462 individuals from gEUVADIS
and ENCODE
-Publicly available quantification for protein coding 

genes
• Approximately 3,000 cis-eQTL (FDR<0.05)
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• Functional genomics data comes with a great deal of 
sequencing

• NA12878 as case study - 1000 
genomes variants are used as gold 
standard

• How much information, for example, do RNA-Seq reads 
(or ChIP-Seq) reads contain? Does that information 
enough to identify individuals?

• It might seem like we don’t infer much information 
from single ChIP-Seq and RNA-Seq experiments 
compared to WGS

• However putting 10 different 
ChIP-Seq experiments and RNA-
Seq together with imputation 
provides a great deal of 
information about the individual
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Light-weight formats to Hide Most 
of the Read Data (Signal Tracks)

• Some lightweight format clearly separate public & 
private info., aiding exchange

• Files become much smaller
• Distinction between formats to compute on and those 

to archive with – become sharper with big data

Mapping coordinates 
without variants (MRF)

Reads 
(linked via ID, 
10X larger than 
mapping coord.)[Bioinformatics 27: 281]
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eQTL Mapping 
Using RNA-Seq

Data

[Biometrics 68(1) 1–11]

• eQTLs are genomic loci 
that contribute to 
variation in mRNA 
expression levels

• eQTLs provide insights 
on transcription 
regulation, and the 
molecular basis of 
phenotypic outcomes

• eQTL mapping can be 
done with RNA-Seq data
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Information Content and Predictability

[Harmanci et al. Nat. Meth.  2016]

• Naive measure of information 
(no LD, distant correlations, 
pop. struc., &c)

• Higher frequency: Lower ICI
• Additive for multiple variants

• Condition specific entropy
• Higher cond. entropy: Lower 

predictability
• Additive for multiple eQTLs
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Genotype 

Predictability

[Harmanciet al. Nat. Meth. (‘16]
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Linking Attack Scenario

[Harmanciet al. Nat. Meth. (in revision)]
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Linking Attacks: Case of Netflix Prize

User (ID) Movie (ID) Date of Grade Grade [1,2,3,4,5]

NTFLX-0 NTFLX-19 10/12/2008 1

NTFLX-1 NTFLX-116 4/23/2009 3

NTFLX-2 NTFLX-92 5/27/2010 2

NTFLX-1 NTFLX-666 6/6/2016 5

… … … …

… … … …

User (ID) Movie (ID) Date of Grade Grade [0-10]

IMDB-0 IMDB-173 4/20/2009 5

IMDB-1 IMDB-18 10/18/2008 0

IMDB-2 IMDB-341 5/27/2010 -

… … … …

… … … …

… … … …

Names available for many users!

• Many users are shared
• The grades of same users are correlated
• A user grades one movie around the same date in two databases

Anonymized	Netflix	Prize	Training	Dataset	
made	available	to	contestants
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Linking Attacks: Case of Netflix Prize

User (ID) Movie (ID) Date of Grade Grade [1,2,3,4,5]

NTFLX-0 NTFLX-19 10/12/2008 1

NTFLX-1 NTFLX-116 4/23/2009 3

NTFLX-2 NTFLX-92 5/27/2010 2

NTFLX-1 NTFLX-666 6/6/2016 5

… … … …

… … … …

User (ID) Movie (ID) Date of Grade Grade [0-10]

IMDB-0 IMDB-173 4/20/2009 5

IMDB-1 IMDB-18 10/18/2008 0

IMDB-2 IMDB-341 5/27/2010 -

… … … …

… … … …

… … … …

Names available for many users!

• Many users are shared
• The grades of same users are correlated
• A user grades one movie around the same date in two databases

• IMDB users are public

• NetFLIX and IMdB moves are public
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Linking Attacks: Case of Netflix Prize

User (ID) Movie (ID) Date of Grade Grade [1,2,3,4,5]

NTFLX-0 NTFLX-19 10/12/2008 1

NTFLX-1 NTFLX-116 4/23/2009 3

NTFLX-2 NTFLX-92 5/27/2010 2

NTFLX-1 NTFLX-666 6/6/2016 5

… … … …

… … … …

User (ID) Movie (ID) Date of Grade Grade [0-10]

IMDB-0 IMDB-173 4/20/2009 5

IMDB-1 IMDB-18 10/18/2008 0

IMDB-2 IMDB-341 5/27/2010 -

… … … …

… … … …

… … … …

Names available for many users!

• Many users are shared
• The grades of same users are correlated
• A user grades one movie around the same date in two databases
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Linking Attack Scenario

[Harmanciet al. Nat. Meth. (in revision)]
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Levels of Expression-Genotype Model 
Simplifications for Genotype Prediction

[Harmanci et al. Nat. Meth. (16)]
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Success in Linking Attack 
with Extremity based Genotype Prediction

200 individuals eQTL Discovery 
200 individuals in Linking AttackHigh

Sensitivity

Low
Sensitivity

High Number
Of eQTLs

Low Number
Of eQTLs

[Harmanci et al. Nat. Meth. (16)]
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Success in Linking Attack 
with Extremity based Genotype Prediction

200 individuals eQTL Discovery 
200 individuals in Linking Attack

200 individuals eQTL Discovery 
100,200 individuals in Linking Attack

[Harmanci et al. Nat. Meth. (16)]



Transcriptome Mining: Tackling core issues related to gene regulation 
& also analyzing the "data exhaust" associated with this activity 

• [Core-1] Expression Clustering, 
Cross-species 
- Comparative ENCODE – Lots of 

worm-fly-human matched data & 
developmental timecourses

- Optimization gives 16 conserved co-
expression modules, 12 w/ hourglass

• [Core-2] State Space Models
of Gene Expression
- Using dimensionality reduction to help 

determine internal & external drivers; 
Decoupling expression changes into 
those from conserved vs species-
specific genes

- Conserved genes have similar 
canonical patterns (iPDPs) in contrast 
to species specific ones (Ex of 
ribosomal v signaling genes)

• [Core-3] Logic Gates Modeling
- Preponderance of OR gates in cancer 

v. cell-cycle (esp. for MYC) 

• [Exhaust-1] Genomic Privacy
& RNA-seq
- The dilemma: The genome as fundamental, 

inherited info that’s very private v need for 
large-scale mining for med. research

- 2-sided nature of RNA-seq presents a 
particularly tricky privacy issue

- Using file formats to remove obvious variants
- Quantifying & removing further variant info 

from expression levels + eQTLs using ICI & 
predictability

- Instantiating a practical linking attack using 
extreme expression levels

• [Exhaust-2] Publication Patterns from 
data producing consortia
- Co-authorship network statistics relate to 

publication rollouts & show gradual adoption 
by a diverse community

- Key role of brokers in data dissemination
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The Human
Genome Project

Worm
Genome
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The Human
Genome Project

Worm
Genome

ENCODE
Pilot

ENCODE
Production

modENCODE
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The Human
Genome Project

Worm
Genome

ENCODE
Pilot

ENCODE
Production

modENCODE

Comparative
ENCODE
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The Human
Genome Project

Worm
Genome

ENCODE
Pilot

1000 Genomes
Pilot

ENCODE
Production

1000 Genomes
Production

modENCODE

Comparative
ENCODE
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With help of M Pazin at NHGRI, identified: 702 community papers that used ENCODE 
data but were not supported by ENCODE funding & 
558 consortium papers supported by ENCODE funding
(https://www.encodeproject.org/search/?type=Publication for up-to-date query)  
Then identified 1,786 ENCODE members & 8,263 non-members .
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2014
co-authorship [Wang	et	al.,	TIG	(’16)]

Dynamics of co-
authorship network
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Transcriptome Mining: Tackling core issues related to gene regulation 
& also analyzing the "data exhaust" associated with this activity 

• [Core-1] Expression Clustering, 
Cross-species 
- Comparative ENCODE – Lots of 

worm-fly-human matched data & 
developmental timecourses

- Optimization gives 16 conserved co-
expression modules, 12 w/ hourglass

• [Core-2] State Space Models
of Gene Expression
- Using dimensionality reduction to help 

determine internal & external drivers; 
Decoupling expression changes into 
those from conserved vs species-
specific genes

- Conserved genes have similar 
canonical patterns (iPDPs) in contrast 
to species specific ones (Ex of 
ribosomal v signaling genes)

• [Core-3] Logic Gates Modeling
- Preponderance of OR gates in cancer 

v. cell-cycle (esp. for MYC) 

• [Exhaust-1] Genomic Privacy
& RNA-seq
- The dilemma: The genome as fundamental, 

inherited info that’s very private v need for 
large-scale mining for med. research

- 2-sided nature of RNA-seq presents a 
particularly tricky privacy issue

- Using file formats to remove obvious variants
- Quantifying & removing further variant info 

from expression levels + eQTLs using ICI & 
predictability

- Instantiating a practical linking attack using 
extreme expression levels

• [Exhaust-2] Publication Patterns from 
data producing consortia
- Co-authorship network statistics relate to 

publication rollouts & show gradual adoption 
by a diverse community

- Key role of brokers in data dissemination
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Acknowledgements: ENCODE/modENCODE
Transcriptome Group

Joel Rozowsky, Koon-Kiu Yan, Daifeng Wang, 
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Kitchen, Erik Ladewig, Julien Lagarde, Eric Lai, Jing Leng, Zhi Lu, Michael MacCoss, 
Gemma May, Rebecca McWhirter, Gennifer Merrihew, David M. Miller, Ali Mortazavi, Rabi 
Murad, Brian Oliver, Sara Olson, Peter Park, Michael J. Pazin, Norbert Perrimon, Dmitri  
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Hiring Postdocs. See gersteinlab.org/jobs ! EncodeProject.org/comparative/transcriptome
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DREISS.gersteinlab.org

D Wang, F He, S Maslov

papers.gersteinlab.org/subject/privacy –

D Greenbaum

Loregic.gersteinlab.org

D Wang,  KK Yan, C Sisu, C Cheng, 
J Rozowsky, W Meyerson

PrivaSeq.gersteinlab.org

A Harmanci, G Gürsoy, F Navarro

github.com/gersteinlab/OrthoClust
K Yan, D Wang, J Rozowsky, H Zheng, C Cheng

Publication patterns [“encode authors”] 

D Wang, KK Yan,  J Rozowsky, E Pan

Acknowledgements

Hiring Postdocs. See 
JOBS.gersteinlab.org !
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Info about content in this slide pack
• General PERMISSIONS
-This Presentation is copyright Mark Gerstein, 

Yale University, 2017. 
-Please read permissions statement at 

www.gersteinlab.org/misc/permissions.html .
- Feel free to use slides & images in the talk with PROPER acknowledgement 

(via citation to relevant papers or link to gersteinlab.org). 
- Paper references in the talk were mostly from Papers.GersteinLab.org. 

• PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and 
clipped images in this presentation see http://streams.gerstein.info . 
- In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can be 

easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt


