Transcriptome Mining:

Tackling core issues related to gene regulation
& also analyzing the "data exhaust" associated with this activity

Mark Gerstein, Yale. Slides freely downloadable from Lectures.GersteinLab.org
& “tweetable” (via @markgerstein). See last slide for more info.



TranSCFIptome = Gene Activity of All Genes in the Genome,
usually quantified by RNA-seq
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ATCGARACATTAAAGTCAAACAATATCAA

[ NATURE 459: 927; NAT. REV. GEN. 10: 57 ]
Expression of genes is quantified by transcription:

RNA-Seq measures mRNA transcript amounts



Successive steps of
Data Reduction

Fastg sequence files
~5-10 GB

BAM files
~1-2-fold reduction

BigWig files
~25-fold reduction

Mapping
to genes

Gene/Transcript
expression matrix
~20-fold reduction

RNA-Seq Overview

ATACAAGCAAGTATAAGTTCGTATGCCGTCTT
GGAGGCTGGAGTTGGGGACGTATGCGGCATAG
TACCGATCGAGTCGACTGTAAACGTAGGCATA
ATTCTGACTGGTGTCATGCTGATGTACTTAAA

Index-building + Alignment to reference genome

Conversion to signal track by overlapping reads <«----------------------

_____

__ Base-resolution expression profile
2
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'% \ L\f'\ 1" f\l | \( \( ‘UV‘N\
= ] W
:
Nucleotide position

Overlap
identification

Overlap profile

Quantitative information from RNA-seq signal:

average signals at exon level (RPKMs)

Reads => Signal

[NAT. REV. 10: 57; PLOS CB 4:e1000158; PNAS 4:107: 5254 ]
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* RNA Seq. gives rise to activity patterns
of genes & regions in the genome




Some Core Science Qs Addressed by RNA-seq

« Gene activity as a function of:

- Developmental stage: basic patterns of co-active genes across
development

- Cell-type & Tissue: relationship to specialized functions

— Evolutionary relationships: behavior preserved across a wide
range of organisms; patterns in model organisms in relation to
those in humans

- Disease phenotypes: disruption of patterns in disease

« Our overarching Qs:
Are there core, ancient patterns of gene expression?
Are they associated with development?
Are they disrupted by disease?



Studying large-scale transcriptome data
also produces

Data Exhaust

Metadata

Front End Back end
Core scientific Data collection and Data Exhaust
purposes analysis

Data on
Collaboration,

publication and
Infrastructure

« Data Exhaust = Exploitable byproducts of big data
collection and analysis

« Creative use of Data is key to Data Science !

[PHOTO: RELAXNEWS; from http://www.lapresse.ca]
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Transcriptome Mining: Tackling core issues related to gene regulation
& also analyzing the "data exhaust" associated with this activity

. [Core-1] Expression Clustering, * [Exhaust-1] Genomic Privacy

Cross-species & RNA-seq
- Comparative ENCODE — Lots of - The dilemma: The genome as fundamental,
worm-fly-human matched data & inherited info that’s very private v need for
developmental timecourses large-scale mining for med. research
- Optimization gives 16 conserved co- - 2-sided nature of RNA-seq presents a
expression modules, 12 w/ hourglass particularly tricky privacy issue
. [Core-2] State Space Models - Using file formats to remove obvious variants

- Quantifying & removing further variant info
from expression levels + eQTLs using ICI &
predictability

- Instantiating a practical linking attack using
extreme expression levels

of Gene Expression

- Using dimensionality reduction to help
determine internal & external drivers;
Decoupling expression changes into
those from conserved vs species-

specific genes « [Exhaust-2] Publication Patterns from
- Conserved genes have similar data producing consortia
canonical patterns (iPDPs) in contrast - Co-authorship network statistics relate to
to species specific ones (Ex of publication rollouts & show gradual adoption
ribosomal v signaling genes) by a diverse community
- [Core-3] Logic Gates Modeling - Key role of brokers in data dissemination

- Preponderance of OR gates in cancer
v. cell-cycle (esp. for MYC)
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[Nature 512:445 ('14); doi: 10.1038/nature13424]

ENCODE Time-course gene expression
data of worm & fly development + human conditions

* (11) Em
1 7 bl'yo % \‘\'L\ $Q/~
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== Worm 8 Sm Fly
datasets: 219 S % datasets: 93
factors: 93 S factors: 52
% &
% 4
<.,
%
e
7 B R @\
L2 Larv? Late Embr¥®
Comparative ENCODE Functional Genomics Resource e Broad sampling of conditions across

(EncodeProject.org/comparative) transcriptomes for human, worm & fly

— embryo & ES cells
Organism Major developmental stages .

worm 33 stages: 0,0.5, 1, ..., 12 hours, L1, L2, L3, (Worm-ﬂy)
(C. elegans) L4, ..., Young Adults, Adults e |n total: ~3000 datasets
(~130B reads)
fly 30 stages: 0, 2,4, 6, 8,..., 20, 22 hours, L1-
(D. mel.) L4, Pupaes, Adults




Expression clustering:
revisiting an ancient problem

Species A Species B

l l

Clustering Clustering
algorithm algorithm
l l co-expressed genes

responsible for the same
QQ QQ function in a species

Eisen MB et al. PNAS 1998 two independent sets
Langfelder P et al. BMC Bioinfo. 2008 of modules
Tamayo P et al. PNAS 1999

Kluger Y et al. Genome Res. 2003
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Expression clustering:
revisiting an ancient problem

Species A

™~

Yan et al. Genome Biol. 2014

A novel unified framework to integrate co-
expression data acr;F

~ Orthologous pairs
between species

e

Species B

S species

v
[ OrthoClust }

@ @ Cross species modules

Q O

.GersteinLab.org
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Network modularity

Dolphin social network

adjacency matrix

number of edges

1,7

Political books
Newman Phy. Rev. E 2013

degree of node |

/
kik;

2m

50’in

expected number of
edges between i and j

whether or not
i, j are in the
same module

12 = Lectures.GersteinLab.org



Network modularity

degree of node |
adjacency matrix /

v
Q — 1 E W k"’kj 5 whether or not
17 g;,05 : :
2m 2m J 1, jareinthe
) same module

1,7

number of edges expected number of
edges between i and j
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Network modularity

Q — Qmax

Optimization
problem

for sim. |
annealing degree of node i

adjacency matrix /

)
1 N Kk
Q — W 5 o whether or not
I, j : (] M 9i035 j jarein the

1,7 same module

number of edges expected number of
edges between i and j
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A toy example [orthoclust]

e Every node i is assigned with a label o, (labels of modules: 1,2,...q).

co-expressed

[Yan et al. GenomeBiol 15:R100 ('14)]

orthologs

Species B - ° ;imagl‘ia”
gous

with the
@ a @ e same value

/

, Y
H 9 Q(forallo,inA) + Q(foralloinB) [*K E 50,-0}.'

|(i,j)EOrtho

Favorableness = "Modularity" in species A + "Modularity" in species B + consistency betw. A & B L:.’
H



[Yan et al. GenomeBiol 15:R100 ('14)]

A toy example [orthoclust]

wn
©
9]
0,
)
wn
5_ _—

Species B

species A specific

conserved modules

species B specific

Use Potts model (generalized Ising model) to simultaneously cluster co-expressed
genes within an organism as well as orthologs shared between organisms. Here, the
ground state configuration correspond to three modules: 1, 2, 4.

co-exp!’essed

ortholggs
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Application for more than
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Signal transduction, cytoskeletal

Morphogenesis, epidermal GF
Histone mRNA proc., nuc. export
Topoisomerase, RNA POL Il

.Cell cyc. ctrl, signal transduction
Ribosome
Translocase, folding, G1S cell cyc.
La autoantigen

Signal transduction, integrins
Spliceosome

S8|INPOW PaAIeSu0D) 9|

[Nature 512:445 ('14); doi: 10.1038/nature13424]

~55000 genes
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Conserved modules exhibit canonical hourglass behavior

Developmental stages that
show the basic architecture
of vertebrates Frog

Phylotypic stage

lllustrations courtesy Naoki Irie
Canonical Inter-organism Behavior

« “Hourglass hypothesis™. all organisms go through a particular
stage in embryonic development ("phylotypic" stage) where

inter-organism expression differences of orthologous genes are
smallest.

« 12 out of our 16 modules have this behavior

[Nature 512:445 ('14); doi: 10.1038/nature13424] 3



Transcriptome Mining: Tackling core issues related to gene regulation
& also analyzing the "data exhaust"” associated with this activity
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[Wang et al. PLOS CB, ‘16]

Is gene regulation among orthologs conserved?

To what degree can’t
ortholog expression
levels be predicted
due to species-specific
regulation?

orthologs co-expressed

& Regulation among orthologs (internal)

& Regulation from species-specific factors (external)

@ Orthologous genes (orthologs)

.| Species-specific transcription factors

m2 ml

With External force Purely Internal Dynamics
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State-space model for internal
and external gene regulatory networks

* State X,: Gene expression vector of
internal group at time ¢

* A captures temporal casual
mﬂuence from Gene i to Genej in
internal group

e By, captures temporal casual
influence from external factor & to
Gene / in internal group

* Control U,: Gene expression vector
of external factors at time ¢

\
\
\
‘\

\
\

[Wang et al. PLOS CB, ‘16]
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State-space model for internal
and external gene regulatory networks

Not enough data to estimate state

space model for genes
(e.g., 25 time points per gene to estimate 4

million elements of 4 or B for 2000 genes) X

¥

Dimensionality reduction from
genes to meta-genes (e.g., SVD)

\
\
\
\
‘\
\
\
\\

Effective state space model for meta-genes
(e.g., 250 time points to estimate 50 matrix elements if
5 meta-genes)

\AWAW,.-"'
J

[Wang et al. PLOS CB, ‘16]
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Canonical temporal expression trajectories from effective
state space model

Is a std. 1storder

homogeneous matrix
difference equation. It

can solved by

diagonalizing A giving....

+ 0
B U

t

[Wang et al. PLOS CB, ‘16]

|
Xt+1 Xt

p' internal principal dynamic pattern

(iPDP): [A,] 4,2, ..., 4,T],

where 4, is p eigenvalue of 4.

iPDP expression

Time t

em (')

Canonical temporal expression trajectories
(e.g., degradation, growth, damped oscillation, etc.)

K]

E
s
§
a
c

Time t
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[Wang et al. PLOS CB, ‘16]

Flowchart
A. Gene state-space model C. Meta-gene state-space model

B. Dimensionality Reduction

w1=AXABU,

Genes of X

Meta-genes of X .

E. Gene’s internal (INT) and external
(EXT) driven expression dynamics

: D. Internal/External Principal
time
composed of PDPs Dynamic Patterns (PDPs)
T . D e————————————————
| ] S 5
INT = C‘_ +C2 i —— [%2]
| ! ] § % (2,7, 2,7 <o 2,71
..... ) c 1 / P
[} o 1 1 N N
I ] 0] © ] ] . ]
+c; +cy / ] = ; ] ] .
] $ T ITTTT7T T 17T
: T T T T : ,,,,, e tlme ] o - -
EXT — dlj% :+d2 /k _||||||_||||||::
~ «— <= Internal regulation among internal genes/meta-genes by 4/4
+d; +d, E «—— <= External regulation from external genes/meta-genes to internal
. genes/meta-genes in Group X by B/B

. Internal genes/meta-genes . External genes/meta-genes




Orthologs have similar internal but different external

dynamic patterns during embryonic development
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Orthologs have correlated iPDP coefficients

1t iPDP ond iPDP
o o
‘_ 0 o0 Po®
a bo @ee®
®e
q_?‘u“) | X ) ’. °
.. r=+0.33 | o .
S t, ﬂ °®
(D LO ] ..0.0 ) * _—
83 &?’ [ 1 r=+0.66
[ © T : " - T ®
£ 0 5 10 15 0 5 10
2 3 iPDP 4t iPDP
8 ® o [
= L0+ T ... Py
S r=+0.67 ® o P90 %
S » o Y
E O . O + ‘.
8 <. ;’/’ .’
O 0 @ o”o o .
| g’ ?o o r .
o e i. o 8% -10.73
0 5 0 0 5 10
(Wang et al. PLOS CB, ‘16] Coefficients of orthologs on WOrm
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Evolutionarily conserved & younger genes exhibit the
opposite internal & external PDP coefficients

p<2.6e-13 —

p<2e-16  —— L
— :

3000
|
o
----{oo o

2500
|

500 2000
| |
b
=
i |
o
t
b

Rank values of gene PDP coefficients in ascending order
1000 1500
l

P<8.3e-4
. -~ O Ribosome
o - - O Signaling
| T T |
iPDP ePDP iPDP ePDP
Worm Fly

Ribosomal genes have significantly larger coefficients for the internal
than external PDPs, but signaling genes exhibit the opposite trend

[Wang et al. PLOS CB, ‘16]
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Human-specific
TFs respond
more strongly
to hormonal

stimulation
during cell-
cycle than
conserved
genes in breast
cancer cell

IPDPs

ePDPs

» Applied to Breast Cancer Cell Cycle
(2 periods) under hormonal stim.
- INT = conserved human genes
 ~1100 H-F-W orthologs

« follow normal cell cycle

- EXT = human spec TFs

oooooooooo

-0.4 0.0

 diff from above

» perhaps responding to stimulation

2 46 8 12

0.6
L1111

-02 02

-04 00 04

ooooooooo

-04 00 04




Transcriptome Mining: Tackling core issues related to gene regulation
& also analyzing the "data exhaust"” associated with this activity

- [core-1] Expression Clustering, * /Fxhausi-17 Genomic Privacy

Cross-species & RNA-seq
- Comparative ENCODE - Lots of - The dilemma: The genome as fundamental,
worm-fly-human matched data & inherited info that’s very private v need for
developmental timecourses large-scale mining for med. research
- Optimization gives 16 conserved co- - 2-sided nature of RNA-seq presents a
expression modules, 12 w/ hourglass particularly tricky privacy issue
- [Core-2] State Space Models - Using file formats to remove obvious variants

- Quantifying & removing further variant info
from expression levels + eQTLs using ICl &
predictability

- Instantiating a practical linking attack using
extreme expression levels

of Gene Expression

- Using dimensionality reduction to help
determine internal & external drivers;
Decoupling expression changes into
those from conserved vs species-

specific genes - [Exhaust-2] Publication Patterns from
- Conserved genes have similar data producing consortia
canonical patterns (iPDPs) in contrast - Co-authorship network statistics relate to
to species specific ones (Ex of publication rollouts & show gradual adoption
ribosomal v signaling genes) by a diverse community
- [Core-3] Logic Gates IViodeling - Key role of brokers in data dissemination

- Preponderance of OR gates in cancer
v. cell-cycle (esp. for MYC)



Modeling cooperativity between
TFs to target gene using logic gates

2-input-1-output logic gate

A regulatory triplet »

10110101 10110101...

RF1

00110101...

10110101... 01110111...

RF2

7

0 —gene off / Inputtype | RF1 |0]0
1 ~gene on (RF1, RF2)
after binarizing gene ’ RF2 |0]1]0]1
expression data* Output T [ X|X|X|X]|

*BoolNet, R package

_ Binarized

X can be 0 or 1, so there are 24=16 possible
output combinations, each of which corresponds
to a unique 2-input-1-output logic gate

L DD

expression

00110101...

30 =



An example: selection of the best-matched logic gate

TF T2 Gene 20 samples
RF1=TF1 0f of 1 of of 1 of 1 ofof 1 ofo]1
RF2=TF2 of 1] 0 of 1jo 1o of1]o of1jo
Gone 1 T=Gene1 0] 0] O of1jo ofo o ofjojo ofojo
/
RF1 0 0 1
RF2 0 1 0
N 2 T e
T o 1 0 0o 1 0
Laplace’s rule of succession s1=(5+1)/(5+2) s2=(4+1)/(5+2) s3=(5+1)/(5+2)
s=(# of selected output state for =6/7 =6/7
the input type + 1)
/(# of input type + 2) TF1 TF2
. RF1=TF 1 0| 1
Consistency score: |f‘>
6/7*5/7*6/7*5/7=0.37 . | AF2=TF2 1]
T=Gene 1 o]o Gene 1

Wang, et al., PLoS Computational Biology, 2015 (‘:'3



App. 1 — TF cooperativity in the cell cycle

/ Yeast Cell Cycle \

Matched
Regulatory triplets Iogic gate
TF1 TF2
1 YHRO084W YBR083W YBR082C AND
2 YKL112W YIL131C YMR198W OR

All common gene
targets

2464

9011 YOR113W  YBL103C YDR042C  XOR }

n
\

TF 176

(7))
Triplet 39,011 2 — @
= 800 - '
Time point 59 e | |
@ 600 -
0
2
€ 400 -
Q@
£ 200 - |:|
© ]
5 o4 U cs=00O00
A DEE S SRR R S 5
X — x + - 2
= ol |k - L
— \ o 1 —C_>_ k= .

AND-like gates™

|
K

Wang, et al., PLoS Computational Biology, 2015 ((:l')



Acute Myeloid Leukemia (AML)

Target gene

Regulatory
triplet

Patient
sample

1824

70

50,865

197

ENCODE Data (K562, ChIP-seq)

National Human Genome Research Institute

ENCODE

TCGA Data (AML, level 3, RNA-seq)
https://tcga-
data.nci.nih.gov/tcga/tcgaDownload.jsp

' CANCER GENOME ATL»\S@

Wang, et al., PLoS Computational Biology, 2015



Regulatory triplet 50,865

App 2 —-TF from ENCODE
cooperativity in AML

Patient sample 197
. for TCGA AML
OR-like gates | expression data
12
G) - - —
a2 _OD— Human TF-TF-target
T Common Matched
% 2000 — _ Target logic gate
‘Z’ -~ Gene (T)
S 1500 — B ATF3 BDP1 YPEL1 AND
% - — MYC BCL3 BCR T=RF1
(@) ] ] _ _
& 1000 ATF3 BRF2  AIF1L AND
5 -
o
O 00— TF1 TF2 3
2 o :_____D__D______ All common gene targets ‘E
NN R R EEE g
L L R - LA L LA p
sk LR o
s T i T E
g
|
[
™

Wang, et al., PLoS Computational Biology, 2015



Cancer-related TF, MYC,
universally amplifies target expression

26.0 Restrict to RF1=MYC, giving 2,153 triplets
23.4 —
other human 8 * RF]. —D—

MYC TF 20.8 5
£ &)
(] _ 18.2 e
2 =7 5 - OR(RFLRF2) _)
= common gene 15.6 E
— targets o
c 13.0 )
2 >« OR(RF1, NOT RF2)
o 150 — 10.4 ((b)
(7) ) g:
c < ‘
(@]
© o
2 00 - = High expression of MYC is sufficient
5 2 for high target gene expression
(@) . —g=
ko) c-Myc Is a Universal Amplifier
s 7 of Expressed Genes in Lymphocytes
E’ I and Embryonic Stem Cells
E I Zugqin Nie,!-6 Gangqin_g Hu,2¢ Gang Wei,? Kairong Cui,? Arito Yama*ne,3 Wolfgang F!escr:,3 Ruoning Wang,*
S 0d = Douglas R. Green,* Lino Tessarollo,? Rafael Casellas,® Keji Zhao,2* and David Levens':
c

7 o o L Sla|ec @ 2 W
T2glEleegogogbhig?
. A

Wang, et al., PLoS Computational Biology, 2015 Q



Transcriptome Mining: Tackling core issues related to gene regulation
& also analyzing the "data exhaust"” associated with this activity

- [core-1] Expression Clustering, * /Fxhausi-17 Genomic Privacy

Cross-species & RNA-seq
- Comparative ENCODE - Lots of - The dilemma: The genome as fundamental,
worm-fly-human matched data & inherited info that’s very private v need for
developmental timecourses large-scale mining for med. research
- Optimization gives 16 conserved co- - 2-sided nature of RNA-seq presents a
expression modules, 12 w/ hourglass particularly tricky privacy issue
- [Core-2] State Space Models - Using file formats to remove obvious variants

- Quantifying & removing further variant info
from expression levels + eQTLs using ICl &
predictability

- Instantiating a practical linking attack using
extreme expression levels

of Gene Expression

- Using dimensionality reduction to help
determine internal & external drivers;
Decoupling expression changes into
those from conserved vs species-

specific genes - [Exhaust-2] Publication Patterns from
- Conserved genes have similar data producing consortia
canonical patterns (iPDPs) in contrast - Co-authorship network statistics relate to
to species specific ones (Ex of publication rollouts & show gradual adoption
ribosomal v signaling genes) by a diverse community
- [Core-3] Logic Gates IViodeling - Key role of brokers in data dissemination

- Preponderance of OR gates in cancer
v. cell-cycle (esp. for MYC)



2-sided nature of functional
genomics data: Analysis can be
very General/Public
or Individual/Private

* General quantifications related to overall aspects
of a condition — ie gene activity as a function of:

- Developmental stage, Evolutionary relationships, Cell-type, Disease

 Above are not tied to an individual’s genotype. However, data is
derived from individuals & tagged with their genotypes

* (Note, a few calculations aim to use explicitly genotype to derive general
relations related to sequence variation & gene expression - eg allelic activity)
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Genomics has similar u @ flickr
"Big Data™ Dilemma in

the Rest of Society a 5. B

» Sharing & "peer- ! "s0@ | .

production” is central to % m

success of many new
ventures, with the same

risks as in genomics

- EG web search: Large-
scale mining essential

* We confront privacy
risks every day we
access the internet

38 = Lectures.GersteinLab.org

[Seringhaus & Gerstein ('09), Hart. Courant (Jun 5); Greenbaum & Gerstein ('11), NY Times (6 Oct)]



Tricky Privacy Considerations in Personal Genomics

* Genetic .
Exceptionalism :
The Genome is very
fundamental data,
potentially very
revealing about one’s
identity & .
characteristics
 Personal Genomic
info. essentially
meaningless
currently but will it
be in 20 yrs? 50 yrs?
- Genomic sequence
very revealing about

one’s childrer]. Is true
consent possible?

— Once put on the web
it can’t be taken back

Culture Clash:

Genomics historically has been a
proponent of “open data” but not clear
personal genomics fits this.

— Clinical Medline has a very different
culture.

Ethically challenged history of genetics

- Ownership of the data & what consent
means (Hela)

« Could your genetic data give rise to a
product line?

[D Greenbaum & M Gerstein ('08). Am J. Bioethics; D Greenbaum & M Gerstein, Hartford Courant, 10 Jul. '08 ; SF Chronicle, 2 Nov. '08;
Greenbaum et al. PLOS CB (‘11) ; Greenbaum & Gerstein ('13), The Scientist; Photo from NY Times]
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The Other Side of the Coin:
Why we should share

« Sharing helps speed research

- Large-scale mining of this information is
important for medical research

- Privacy is cumbersome, particularly for big
data

« Sharing is important for reproducible research
« Sharing is useful for education

— More fun to study a known person’s genome
« Eg Zimmer's Game of Genomes in STAT

CARLZIMMER'S

GAMEOF GENOMES

SEASON |

Robert Munsch

We Share

EVERYTHING!

ilustrated by Michael Martchenko

[Yale Law Roundtable (‘10). Comp. in Sci. &
Eng. 12:8; D Greenbaum & M Gerstein (‘09).
Am. J. Bioethics; D Greenbaum & M Gerstein
(“10). SF Chronicle, May 2, Page E-4;
Greenbaum et al. PLOS CB (‘11)]




The Dilemma

Dawd Parkins

[Economist, 15 Aug ‘15]

« The individual (harmed?) v the collective (benefits)
— But do sick patients care about their privacy?
« How to balance risks v rewards - Quantification

- What is acceptable risk?
Can we quantify leakage?
« EXx: photos of eye color

— Cost Benefit Analysis
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Current Social & Technical Solutions

* Closed Data Approach * Open Data
- Consents - Genomic "test pilots”
— “Protected” distribution via dbGAP (ala PGP)?
—- Local computes on secure computer | fglggfltfetzf,s &

* Issues with Closed Data

— Non-uniformity of consents & paperwork

 Different international norms, leading to
confusion

- Encryption & computer security creates
burdensome requirements on data
sharing & large scale analysis

- Many schemes get “hacked”

[Greenbuam et al ('04), Nat. Biotech; Greenbaum & Gerstein ('13), The Scientist]

- Some public data &
data donation is
helpful but is this a
realistic solution for
an unbiased sample
of ~1M
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Strawman Hybrid Social & Tech Proposed Solution?

 Fundamentally, researchers < Quantifying Leakage &
have to keep genetic secrets.  allowing a small amounts of it

- Need for an (international) « Careful separation & coupling

legal framework of private & public data

- Genetic Licensure & training - Lightweight, freely accessible
for individuals secondary datasets coupled
(si.milar to medical license, to underlying variants
drivers license) - Selection of stub & "test pilot"

* Technology to make things datasets for benchmarking
easier — Develop programs on public

— Cloud computing & enclaves stubs on your laptop, then move
(eg solution of Genomics the program to the cloud for
England) private production run

« Technological barriers
shouldn't create a social
incentive for “hacking”

[D Greenbaum, M Gerstein (‘11). Am J Bioeth 11:39. Greenbaum & Gerstein, The Scientist ('13)]
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Representative Expression, Genotype, eQTL
Datasets

« Genotypes are available from the 1000 Genomes
Project

 MRNA sequencing for 462 individuals from geUVADIS
and ENCODE

- Publicly available quantification for protein coding
genes

» Approximately 3,000 cis-eQTL (FDR<0.05)

ocow AN £ %

= :' ._Z,:" —,' . / 1 \
1000 Genomes RN SEUVADIS (S
“‘ ) <%~ / g “' .
sl ? > o % *

A Deep Catalog of Human Genetic Variation
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Functional genomics data comes with a great deal of
sequencing

* NA12878 as case study - 1000
genomes variants are used as gold

standard
How much information, for example, do RNA-Seq reads
(or ChIP-Seq) reads contain? Does that information
enough to identify individuals?

Variants from RNA-Seq reads

R1 startl end1 ATAAATGAGGATTTAGAGGTGGTGACC
reference genome ATAAATGAGAATTTTGAGGTGGTGACC

R2 start2 end2 T-- ATTTTCTCTCATACCACCTCAACG
reference genome TTTATTTTCT --- ATACCACCTCAACG

It might seem like we don’t infer much information
from single ChIP-Seq and RNA-Seq experiments
compared to WGS

 However putting 10 different
ChIP-Seq experiments and RNA-
Seq together with imputation
provides a great deal of
information about the individual

Variants directly
in the reads

3 x 10
m—WGS
Tk === H3K4me3
CTCF
6 === RNA-Seq
g\ L
< st
g
= 4F
<
E sl
S
=
— 2k
[ /
0 e —— I 1
0 2 3 4 5 6
Total Coverage (bp) x 10
45 x10
' SNV
4r SNV+imputation -
3.5 i
S 3¢ .
Z
Post ]
o
g 2 :
E
Z 15 I 7
1k i
0.5 .
O 1 1
WGS All ChIP-Seg+RNA-Seq
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Light-weight formats to Hide Most
of the Read Data (Signal Tracks)

« Some lightweight format clearly separate public &
private info., aiding exchange

* Files become much smaller

« Distinction between formats to compute on and those
to archive with — become sharper with big data

Anonymization
(Optional)

[Bioinformatics 27: 281]

Public
AlignmentBlocks ID
elnredl g91p2 2000l 8 250 e il UW L B T
chr5:=:561:510:1:50 2 =f-====-
LhLj LTI TTIEIR N g5 B SRR

[h//

Mapping coordinates
without variants (MRF)

----- =2 ATGGCTCGTTGGGATT...
""" >3 CTCTGGTCTGTGTACC...

Private
ID Sequences
..... »1 GTCGTGTCTGTATCCA...

B——

Reads

(linked via ID,
10X larger than
mapping coord.)
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(a) C A
Individual

)

(ii)

(iii)

[Biometrics 68(1) 1-11]

Frequency

EE eX0N | SNP

mmm— non-trascriped regions,

e.g., intron etc.

(b)

(c)

15

10

eQTL Mapping
Using RNA-Seq
Data

« eQTLs are genomic loci
that contribute to
variation in mRNA
expression levels

« eQTLs provide insights
on transcription
regulation, and the
molecular basis of
phenotypic outcomes

« eQTL mapping can be
done with RNA-Seq data
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Information Content and Predictability
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Linking Attack Scenario

Phenotype dataset
(Public)

Genotype dataset
(Stolen/Hacked/Queried)

Phenotype-Genotype

" &’1' '6(\‘
correlation dataset & @ .
Phenotype 1 «—»Variant 1 1
Phenotype 2 «<—Variant 2
0

Phenotype g¢—®Variant g

Predicted/Matched genotypes
HIV O “q‘ &
| Status| @S o @
I Predicted variant e 496 i o
1
HIV ‘,fe"z,t,}’pes o HIV+ 0/0 1/1 - 151
Statusl o & o3
\\’b‘\% & » 0 HIV- | 22 1/1 - 0/0
g8 HV+ 1 |0 2 Genotype comparison 1/0| 1/0 ... | 0/2
HIV-| 2 | 2 | - 1 and matching 2200 .. | 11
n 0/1| 1/1| .. | 271
PID-n HIV- o 1 = 1

[Harmanciet al. Nat. Meth. (in revision)]
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Linking Attacks: Case of Netflix Prize

Names available for many users!

m Movie (ID) Date of Grade Grade [1,2,3,4,5] m Movie (ID) Date of Grade Grade [0-10]

NETELIN

NTFLX-0 NTAREAS 10/12/2008 IMDB-0 IMDB-173 4/20/2009 5
NTFLX-1 NTFLX-116 4123/2009 3 MDB1 MDB.18 10/18/2008 0
NTFLX-2 NTFLX-92 5/27/2010 2 MDB.2 IMDB.341 . )
NTFLX-1 NTFLX-666 6/6/2016 5

Many users are shared
The grades of same users are correlated
* A user grades one movie around the same date in two databases

Anonymized Netflix Prize Training Dataset
made available to contestants
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Linking Attacks: Case of Netflix Prize

Names available for many users!

m Movie (ID) Date of Grade Grade [1,2,3,4,5] m Movie (ID) Date of Grade Grade [0-10]

NTFLX-2 NTFLX-92 5/27/2010

IMDB-2 IMDB-341 5/27/2010 -
NTFLX-1 NTFLX-666 6/6/2016 5

* Many users are shared

* The grades of same users are correlated

* A user grades one movie around the same date in two databases
* IMDB users are public

* NetFLIX and IMdB moves are public
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Linking Attacks: Case of Netflix Prize

Names available for many users!

m Movie (ID) Date of Grade Grade [1,2,3,4,5] m Movie (ID) Date of Grade Grade [0-10]

NTFLX-2 NTFLX-92 5/27/2010

IMDB-2 IMDB-341 5/27/2010 -

Many users are shared
The grades of same users are correlated
* A user grades one movie around the same date in two databases
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Linking Attack Scenario

Phenotype dataset
(Public)

Genotype dataset
(Stolen/Hacked/Queried)

Phenotype-Genotype

" &’1' '6(\‘
correlation dataset & @ .
Phenotype 1 «—»Variant 1 1
Phenotype 2 «<—Variant 2
0

Phenotype g¢—®Variant g

Predicted/Matched genotypes
HIV O “q‘ &
| Status| @S o @
I Predicted variant e 496 i o
1
HIV Jenogres & HIV+ 0/0 1/1 - 151
statusl o o @
NN o HIV- 22 11 - o/
g8 HV+ 1 |0 2 Genotype comparison 1/0| 1/0 ... | 0/2
HIV- 2 | 2 1 and matching 2200 .. | 11
H o/1 1/1 ... | 221
PID-n  HIV- o 1 1

[Harmanciet al. Nat. Meth. (in revision)]
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Levels of Expression-Genotype Model
Simplifications for Genotype Prediction

A' P(Ex, Vi)

.
I " :
/h’ [
- | ‘ |
O 1 2 Extremity based Simplified extremity based
High joint distnbution joint distribution
HEE R , - :""A """""" Y
I I ‘ | ! Positive
8 - W ; [
0 | La” ! I I (Genotype: 2)
g re -.'F‘ et ettt ot | X ———————— i ST S A—" - i T R A S : e
Q e : : ‘5 : : I Negative
|ﬁ ! ! 1€ - = ! 1 : extremity.
| : : : : : : I (Genotype: 0)
LO\V ————— H —<ﬁ
Frequency o 1 2 0 1 2 0O 1 2
Genotype Genotype Genotype
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Success in Linking Attack
with Extremity based Genotype Prediction

200 individuals eQTL Discovery
High 200 individuals in Linking Attack

Sensitivity
1.0¢

Genotypes Only

Genotypes + Gender

Genotypes + Population
Genotypes + Gender + Population

o o o
ES (o] (e 4]
T T T

o
(M)

Fraction of Vulnerable Individuals

0.0

Low 0 110 20 3‘0 40
Sensitivity l Association Strength Threshold I
High Number Low Number
Of eQTLs Of eQTLs
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Fraction of Vulnerable Individuals

o g o o -
N > o (o) o
T T T T 1

o
o
o

Success in Linking Attack
with Extremity based Genotype Prediction

200 individuals eQTL Discovery
100,200 individuals in Linking Attack

200 individuals eQTL Discovery
200 individuals in Linking Attack

1.0¢
Genotypes Only
Genotypes + Gender w
\ Genotypes + Population g
\ Genotypes + Gender + Population © 0.8

\l >
2
L=

[0} i

S 0.6

o
Q
£

S 0.4+
N
(o]
c
.0

© 0.2+
o
L

4 . : 0.0 !
10 20 30 4 0 10 20 30

Association Strength Threshold Association Strength Threshold

=
o
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Transcriptome Mining: Tackling core issues related to gene regulation
& also analyzing the "data exhaust"” associated with this activity

- [core-1] Expression Clustering, * /Fxhausi-17 Genomic Privacy

Cross-species & RNA-seq
- Comparative ENCODE - Lots of - The dilemma: The genome as fundamental,
worm-fly-human matched data & inherited info that’s very private v need for
developmental timecourses large-scale mining for med. research
- Optimization gives 16 conserved co- - 2-sided nature of RNA-seq presents a
expression modules, 12 w/ hourglass particularly tricky privacy issue
- [Core-2] State Space Models - Using file formats to remove obvious variants

- Quantifying & removing further variant info
from expression levels + eQTLs using ICl &
predictability

- Instantiating a practical linking attack using
extreme expression levels

of Gene Expression

- Using dimensionality reduction to help
determine internal & external drivers;
Decoupling expression changes into
those from conserved vs species-

specific genes - [Exhaust-2] Publication Patterns from
- Conserved genes have similar data producing consortia
canonical patterns (iPDPs) in contrast - Co-authorship network statistics relate to
to species specific ones (Ex of publication rollouts & show gradual adoption
ribosomal v signaling genes) by a diverse community
- [Core-3] Logic Gates IViodeling - Key role of brokers in data dissemination

- Preponderance of OR gates in cancer
v. cell-cycle (esp. for MYC)



The Human

Science

4 C. elegany
y Sequence to Biology

Worm
Genome
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The Human ENCODE ENCODE
Genome Project Pilot Production

THES. — /=
HUMAN 7
GENOME

Worm modENCODE
Genome
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A Asexican Association sy

HUMAN 7
GENOME

The Human ENCODE
Genome Project Pilot
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| | e ~ il

ENCODE Comparative
Production ENCODE

nawure
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/

HEAD TO TAIL

(

Worm modENCODE
Genome
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The Human
Genome Project

THE
GENOME

HUMAN

ENCODE
Pilot

»&§\\\\m
‘ ING
BLUEPRINT

vvvvvvvvv

ENCODE
Production

Comparative
ENCODE

HEAD TO TAIL

Worm
Genome

modENCODE

1000 Genomes
Pilot

1000 Genomes
Production
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The Human ENCODE ENCODE Comparative Epigenome
Genome Prolect Pilot Production ENCODE Roadmap

namre

HEAD TO TAIL

eneticVariation

oMY it CC ey "\\/;( %
ﬁl RCAY ~ i
GATGTCAGAGGTGT CSGOAC
STEW-TACE TTCITIC THIGER

ACH  GTTd 5 C C
TG (elre Q‘ ng‘-
4 7 v

Worm modENCODE 1000 G.enomes 1000 Genc_)mes GTEXx
Genome Pilot Production
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With help of M Pazin at NHGRI, identified: 702 community papers that used ENCODE
data but were not supported by ENCODE funding &

558 consortium papers supported by ENCODE funding
(https://www.encodeproject.org/search/?type=Publication for up-to-date query)

Then identified 1,786 ENCODE members & 8,263 non-members .

B non-ENCODE (papers used ENCODE data) B ENCODE

400 —

B non-ENCODE (papers used ENCODE data)
B ENCODE

>

300 —

§ ffljjlllll|

# Authors Yr. (‘04 to ‘15)

siaded #

2004 h
2007
2008
2009
2010
2011
2012
2013
2014
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ENCODE member
non-member
ENCODE member broker

non-member broker
— co-authorship

® 6 & O

Co-authorship Network of
ENCODE members
& Data Users
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Co-authorship Network of
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ENCODE member
non-member
ENCODE member broker

non-member broker
— co-authorship

® 6 & O

Co-authorship Network of
ENCODE members
& Data Users
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Dynamics of co-
authorship network

© ENCODE member
® non-member

e ENCODE member broker
® non-member broker
—— co-authorship

2014
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Dynamics of co- 2009 2010
authorship network L e
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Dynamics of co-
authorship network
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Transcriptome Mining: Tackling core issues related to gene regulation
& also analyzing the "data exhaust"” associated with this activity

- [core-1] Expression Clustering, * /Fxhausi-17 Genomic Privacy

Cross-species & RNA-seq
- Comparative ENCODE - Lots of - The dilemma: The genome as fundamental,
worm-fly-human matched data & inherited info that’s very private v need for
developmental timecourses large-scale mining for med. research
- Optimization gives 16 conserved co- - 2-sided nature of RNA-seq presents a
expression modules, 12 w/ hourglass particularly tricky privacy issue
- [Core-2] State Space Models - Using file formats to remove obvious variants

- Quantifying & removing further variant info
from expression levels + eQTLs using ICl &
predictability

- Instantiating a practical linking attack using
extreme expression levels

of Gene Expression

- Using dimensionality reduction to help
determine internal & external drivers;
Decoupling expression changes into
those from conserved vs species-

specific genes - [Exhaust-2] Publication Patterns from
- Conserved genes have similar data producing consortia
canonical patterns (iPDPs) in contrast - Co-authorship network statistics relate to
to species specific ones (Ex of publication rollouts & show gradual adoption
ribosomal v signaling genes) by a diverse community
- [Core-3] Logic Gates IViodeling - Key role of brokers in data dissemination

- Preponderance of OR gates in cancer
v. cell-cycle (esp. for MYC)



Transcriptome Mining: Tackling core issues related to gene regulation
& also analyzing the "data exhaust" associated with this activity

. [Core-1] Expression Clustering, * [Exhaust-1] Genomic Privacy

Cross-species & RNA-seq
- Comparative ENCODE — Lots of - The dilemma: The genome as fundamental,
worm-fly-human matched data & inherited info that’s very private v need for
developmental timecourses large-scale mining for med. research
- Optimization gives 16 conserved co- - 2-sided nature of RNA-seq presents a
expression modules, 12 w/ hourglass particularly tricky privacy issue
. [Core-2] State Space Models - Using file formats to remove obvious variants

- Quantifying & removing further variant info
from expression levels + eQTLs using ICI &
predictability

- Instantiating a practical linking attack using
extreme expression levels

of Gene Expression

- Using dimensionality reduction to help
determine internal & external drivers;
Decoupling expression changes into
those from conserved vs species-

specific genes « [Exhaust-2] Publication Patterns from
- Conserved genes have similar data producing consortia
canonical patterns (iPDPs) in contrast - Co-authorship network statistics relate to
to species specific ones (Ex of publication rollouts & show gradual adoption
ribosomal v signaling genes) by a diverse community
- [Core-3] Logic Gates Modeling - Key role of brokers in data dissemination

- Preponderance of OR gates in cancer
v. cell-cycle (esp. for MYC)
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Info about content in this slide pack

 General PERMISSIONS

- This Presentation is copyright Mark Gerstein,
Yale University, 2017.

- Please read permissions statement at

www.gersteinlab.org/misc/permissions.htmi .

- Feel free to use slides & images in the talk with PROPER acknowledgement
(via citation to relevant papers or link to gersteinlab.org).

- Paper references in the talk were mostly from Papers.GersteinLab.org.

« PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and

clipped images in this presentation see http://streams.gerstein.info .

- In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be
easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt
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