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Prioritizing somatic variants: Approaches to identifying key variants 
through functional impact & recurrence

Mark Gerstein
Yale

Slides freely 
downloadable from 

Lectures.GersteinLab.org
& “tweetable” 

(via @markgerstein). 

See last slide for more info.
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tumor

normal

Personal genomes will soon become a commonplace part of medical research & eventually treatment 
(esp. for cancer). They will provide a primary connection for biological science to the general public.

Personal Genomics 
as a Gateway into Biology
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Personal Genomics 
as a Gateway into Biology

Personal genomes will soon become a commonplace part of medical research & eventually treatment 
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Modified	from	A.	Zehir	et	al,	Nat.	Med	(2017)

Key	variants will	increasingly	play	essential	roles	in	precision	medicine

1. General 
diagnosis

2. Sample extraction 3. Sample preparation

4. Sequencing 5. Analysis 6. Review

Clinical report

Trial
matching

Refined 
diagnosis 
(ex: sub-

cancer type)

Database of variants
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Drivers
directly confer a selective growth advantage to 
the tumor cell.

A typical tumor contains 2-8 drivers.

identified through signals of positive selection.

Existing cohorts of ~100s give enough power to 
identify

Passengers
Conceptually, a passenger mutation has no 
direct or indirect effect on tumor progression.

There are 1000s of passengers in a typical 
cancer genome.

Canonical model of drivers & passengers in cancer

[Vogelstein Science 2013. 339:1546]
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Top:	Raphael,	et	al.,	Genome	Med.	(2014)
Bottom:	Modified	from	Zehir	et	al,	Nat.	Med	(2017)

Number	of	patients	in	
matched	clinical	trials	

identified	on	the	basis	of	
actionable	variants	in	

different	genes

Identifying	select	driver	
variants	from	the	large	

pool	of	candidate	variants
Prioritizing key 

variants identifies 
drivers to better 

enable more precise 
diagnostics and 

targeted therapies

SNVs																																					Amplifications						Fusions
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Prioritizing somatic variants: 
Approaches to identifying key variants through functional impact & recurrence

• Introduction
• Large growth in cancer genome data
• Mining the data to prioritize variants 

for key drivers
• Functional impact #1: Coding

• ALoFT: Annotation of Loss-of-Function 
Transcripts. LOF annotation as a complex 
problem. 

• Finding deleterious LoF SNVs
• Frustration as a localized metric of SNV 

impact. Differential profiles for oncogenes 
vs. TSGs

• Functional impact #2: Non-coding
• FunSeq integrates evidence, with an 

entropy based weighting scheme

• Recurrence #1: 
Statistics for driver identification 
• Background mutation rate significantly varies & is 

correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, explicitly 

modeling covariates
• MOAT does a variety of non-parm. shuffles (annotation, 

variants, &c). Useful when explicit covariates not available. 
Slower than but speeded up w/ GPUs

• Recurrence #2:
(Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, MET. 

Other suggestive non-coding hotspots.
• Tumor evolution analysis of the timing of key mutations 

helps with classification
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vat.gersteinlab.org

VCF Input 
Output:
• Annotated VCFs
• Graphical representations of 

functional impact on 
transcripts

Access:
• Webserver
• AWS cloud instance
• Source freely available

Habegger	L.*,	Balasubramanian	S.*,	et	al.	Bioinformatics,	2012

Variant Annotation Tool (VAT)

CLOUD APPLICATION



1
2

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Complexities in LOF annotation

Transcript isoforms,
distance to stop,
functional domains,
protein folding,
etc.

Balasubramanian	S.	et	al., Genes	Dev., ’11
Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17
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Annotation of Loss-of-Function Transcripts (ALoFT)

Runs on top of VAT

Output:

● Impact score: benign or deleterious.

● Confidence level.

● Annotated VCF.

Access:

● Software package: aloft.gersteinlab.org

● GitHub: github.com/gersteinlab/aloft

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17
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LoF distribution varies as expected 
by mutation set (from healthy people v from disease)

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17
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ALoFT identifies deleterious
somatic LoF variants
Cancer genes:
• COSMIC consensus.
• Enriched in deleterious LoFs.

LoF tolerant genes:
• LoF in the 1KG cohort.
• Depleted in deleterious LoFs.

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17
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ALoFT refines cancer 
mutation characterization

Balasubramanian	S.*,	Fu	Y.*		et	al.,	NComms.,	’17

Vogelstein et al. '13: if >20% of mutations in gene 
inactivating → tumor suppressor gene (TSG).
ALoFT further refines 20/20 rule predictions.
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Prioritizing somatic variants: 
Approaches to identifying key variants through functional impact & recurrence

• Introduction
• Large growth in cancer genome data
• Mining the data to prioritize variants 

for key drivers
• Functional impact #1: Coding

• ALoFT: Annotation of Loss-of-Function 
Transcripts. LOF annotation as a complex 
problem. 

• Finding deleterious LoF SNVs
• Frustration as a localized metric of SNV 

impact. Differential profiles for oncogenes 
vs. TSGs

• Functional impact #2: Non-coding
• FunSeq integrates evidence, with an 

entropy based weighting scheme

• Recurrence #1: 
Statistics for driver identification 
• Background mutation rate significantly varies & is 

correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, explicitly 

modeling covariates
• MOAT does a variety of non-parm. shuffles (annotation, 

variants, &c). Useful when explicit covariates not available. 
Slower than but speeded up w/ GPUs

• Recurrence #2:
(Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, MET. 

Other suggestive non-coding hotspots.
• Tumor evolution analysis of the timing of key mutations 

helps with classification
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What is 
localized 

frustration
?

[Ferreiro	et	al.,	PNAS	(’07)]
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Workflow for evaluating localized frustration changes (∆F)
[K
um
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	e
t	a

l.	
N
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]
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Complexity of the second order 
frustration calculation

T
i
m
e

Accuracy

Second order frustration calculation (∆F)

MD-assisted free energy calculation (∆G)

First order frustration calculation (F)
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Comparing ∆F values across different 
SNV categories: disease v normal

Loss of 
frustration

Gain of 
frustration

[Kumar	et	al,	NAR (2016)]

Core residues Surface residues

Normal mutations (1000G) tend to unfavorably 
frustrate (less frustrated) surface more than core, 
but for disease mutations (HGMD) 
no trend & greater changes
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Comparison between ∆F 
distributions: TSGs v. oncogenes

SNVs in TSGs change frustration more in core than the surface, whereas those associated with oncogenes manifest the 
opposite pattern. This is consistent with differences in LOF v GOF mechanisms.

[K
um

ar
	e
t	a

l,	
N
AR

(2
01

6)
]
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Prioritizing somatic variants: 
Approaches to identifying key variants through functional impact & recurrence

• Introduction
• Large growth in cancer genome data
• Mining the data to prioritize variants 

for key drivers
• Functional impact #1: Coding

• ALoFT: Annotation of Loss-of-Function 
Transcripts. LOF annotation as a complex 
problem. 

• Finding deleterious LoF SNVs
• Frustration as a localized metric of SNV 

impact. Differential profiles for oncogenes 
vs. TSGs

• Functional impact #2: Non-coding
• FunSeq integrates evidence, with an 

entropy based weighting scheme

• Recurrence #1: 
Statistics for driver identification 
• Background mutation rate significantly varies & is 

correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, explicitly 

modeling covariates
• MOAT does a variety of non-parm. shuffles (annotation, 

variants, &c). Useful when explicit covariates not available. 
Slower than but speeded up w/ GPUs

• Recurrence #2:
(Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, MET. 

Other suggestive non-coding hotspots.
• Tumor evolution analysis of the timing of key mutations 

helps with classification
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Funseq: a flexible framework to determine 
functional impact & use this to prioritize variants

Annotation (tf binding 
sites open chromatin, 
ncRNAs) & Chromatin 
Dynamics

Conservation
(GERP, allele freq.)

Mutational impact 
(motif breaking, Lof) 

Network (centrality 
position) [F

u 
et

 a
l.,
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en
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FunSeq.gersteinlab.org
HOT	region

Sensitive	region
Polymorphisms

Genome

• Entropy based method for weighting 
consistently many genomic features

• Practical web server 
• Submission of variants & pre-

computed large data context from 
uniformly processing large-scale 
datasets

[Fu et al., GenomeBiology ('14)]
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Approaches to identifying key variants through functional impact & recurrence
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Late replicated regions
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Early replicated regions

Noncoding 
annotations



3
0

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Late replicated regions

Ca
nc
er
	T
yp
e	
1

Ca
nc
er
	T
yp
e	
2

Ca
nc
er
	T
yp
e	
3

Early replicated regions

Noncoding 
annotations



3
1

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Cancer 
Somatic 

Mutational 
Heterogeneity, 
across cancer 

types, 
samples & 

regions

[Lochovsky et al. NAR (’15)]
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[Yan et al., PLOS Comp. Bio. (‘17); S. Li et al., PLOS Genetics (‘17)] ]

Variation in somatic mutations 
is closely associated with 
chromatin structure (TADs) & 
replication timing

Chromatin remodeling failure leads to more mutations in 
early-replicating regions 

genomic distance from the TAD boundary
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mrTADFinder: 
Identifying TADs at multiple 
resolutions by maximizing 
modularity 
vs appropriate null

[Yan et al., PLOS Comp. Bio. (‘17)]
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Prioritizing somatic variants: 
Approaches to identifying key variants through functional impact & recurrence

• Introduction
• Large growth in cancer genome data
• Mining the data to prioritize variants 

for key drivers
• Functional impact #1: Coding

• ALoFT: Annotation of Loss-of-Function 
Transcripts. LOF annotation as a complex 
problem. 

• Finding deleterious LoF SNVs
• Frustration as a localized metric of SNV 

impact. Differential profiles for oncogenes 
vs. TSGs

• Functional impact #2: Non-coding
• FunSeq integrates evidence, with an 

entropy based weighting scheme

• Recurrence #1: 
Statistics for driver identification 
• Background mutation rate significantly varies & is 

correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, explicitly 

modeling covariates
• MOAT does a variety of non-parm. shuffles (annotation, 

variants, &c). Useful when explicit covariates not available. 
Slower than but speeded up w/ GPUs

• Recurrence #2:
(Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, MET. 

Other suggestive non-coding hotspots.
• Tumor evolution analysis of the timing of key mutations 

helps with classification
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Cancer Somatic Mutation Modeling
• Suppose there are k genome 

elements. For element i, define:
– ni: total number of nucleotides
– xi: the number of mutations within the 

element
– p: the mutation rate
– Ri: the covariate rank of the element

• Non-parametric model is useful 
when covariate data is missing for 
the studied annotations

• Also sidesteps issue of properly 
identifying and modeling every 
relevant covariate 
(possibly hundreds)

Model 1: Constant Background 
Mutation Rate (Model from 
Previous Work)

[Lochovsky et al. NAR (’15)]

PARAMETRIC MODELS

Model 3a: Random 
Permutation of Input 
Annotations
Shuffle	annotations	within	local	
region	to	assess	background	
mutation	rate.

Model 2a: Varying Mutation Rate
with Single Covariate Correction

Model 2b: Varying Mutation Rate
with Multiple Covariate Correction

[Lochovsky et al. under review]

NON-PARAMETRIC MODELS

Model 3b: Random 
Permutation of Input Variants
Shuffle	variants	within	local	
region	to	assess	background	
mutation	rate.

Assume	constant	background	
mutation	rate	in	local	regions.
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MOAT-a: Annotation-based permutation

[Lochovsky et al. under review]
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MOAT-v: Variant-based Permutation

[Lochovsky et al. under review]

Can preserve tri-nt context in shuffle
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MOAT-s: a variant on MOAT-v
• A somatic variant simulator

• Given a set of input variants, shuffle to new locations, taking genome structure into 
account

[Lochovsky et al. under review]
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Funseq Integration with MOAT

• Run Funseq over the whole genome
• Produce signal track that is the maximum score at each position

• Calculate an annotation signal by summing the intersecting variants’ scores

• Use the same procedure on permuted data

• These are background scores to determine if the observed score is 
significantly elevated

80 80
5050

2020

2030+ =	50

0

40

[Lochovsky et al. under review]
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LARVA Model Comparison
• Comparison of mutation count frequency implied by the binomial model (model 1) and the 

beta-binomial model (model 2) relative to the empirical distribution
• The beta-binomial distribution is significantly better, especially for accurately modeling 

the over-dispersion of the empirical distribution

[Lochovsky et al. NAR (’15)]
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MOAT: recapitulates LARVA 
with GPU-driven runtime scalability

Computational efficiency of MOAT’s 
NVIDIA™ CUDA™ version, with 
respect to the number of permutations, 
is dramatically enhanced compared to 
CPU version.

MOAT’s high mutation burden elements 
recapitulate LARVA’s results & published 
noncoding cancer-associated elements.

Number	of	
permutations

Fold	speedup	of	
CUDA version

1k 14x
10k 100x
100k 256x

..

.

[Lochovsky et al. under review]
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Prioritizing somatic variants: 
Approaches to identifying key variants through functional impact & recurrence

• Introduction
• Large growth in cancer genome data
• Mining the data to prioritize variants 

for key drivers
• Functional impact #1: Coding

• ALoFT: Annotation of Loss-of-Function 
Transcripts. LOF annotation as a complex 
problem. 

• Finding deleterious LoF SNVs
• Frustration as a localized metric of SNV 

impact. Differential profiles for oncogenes 
vs. TSGs

• Functional impact #2: Non-coding
• FunSeq integrates evidence, with an 

entropy based weighting scheme

• Recurrence #1: 
Statistics for driver identification 
• Background mutation rate significantly varies & is 

correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, explicitly 

modeling covariates
• MOAT does a variety of non-parm. shuffles (annotation, 

variants, &c). Useful when explicit covariates not available. 
Slower than but speeded up w/ GPUs

• Recurrence #2:
(Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, MET. 

Other suggestive non-coding hotspots.
• Tumor evolution analysis of the timing of key mutations 

helps with classification
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Power, as an issue in driver discovery 

Better 
annotation or 
large number 
of samples 
could help.

[K
um

ar
 &

 G
er

st
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n,
 N

at
ur

e
('1

7)
]
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An (underpowered) 
case study: pRCC
• Kidney cancer lifetime risk of 

1.6% & the papillary type (pRCC) 
counts for ~10% of all cases

• TCGA project sequenced 161
pRCC exomes & classified them 
into subtypes
– Yet, cannot pin down the cause for 

a significant portion of cases....
•35 WGS of TN pairs, 
perhaps useful?

[Cancer Genome Atlas Research Network N Engl J Med. (‘16) ]
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Tyr-kinase 
MET:

Known Facts 
& New Results

•MET is long known pRCC driver
•In MET, TCGA found somatic SNVs, dup-
lications & an alt. splicing event as drivers (43/161).
•In addition, from 35 WGS we found

–A noncoding hotspot associated with MET
–Lack of SV and breakpoint disrupting MET
–Germline SNP (rs11762213) predicts survival 
in type 2 patients

[A. Gentile, L. 
Trusolino and PM. 
Comoglio, Cancer 
and Metastasis 
Reviews (‘08); S. Li, 
B. Shuch and M. 
Gerstein PLOS 
Genetics (‘17)] 
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Beyond 
MET: 2 
non-coding 
hotspots in 
NEAT & 
ERRFl1, 

supported 
by expr. 
changes & 
survival 
analysis

[L
i e

t a
l. 

PL
O

S 
G

en
et

ic
s 

(‘1
7)

] 
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Yates	et	al,	NRG	(2012)

Tumor	Evolution:	Highlight	the	Ordering	of	Key	Mutations
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Construct evolutionary trees in pRCC

• Infer mutation order and tree structure based on mutation 
abundance (PhyloWGS, Deshwar et al., 2015)

• Some of the key mutations occur in all the clones while others 
are just in some parts of the tree 

DNMT3A: premature stop
NEAT1: noncoding
SMARCA4: missense

MET: noncoding
ERRFI1: noncodingKDM6A: missense

[S. Li, B. Shuch and M. Gerstein PLOS Genetics (‘17)] 
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Tree topology correlates with molecular subtypes
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Prioritizing somatic variants: 
Approaches to identifying key variants through functional impact & recurrence

• Introduction
• Large growth in cancer genome data
• Mining the data to prioritize variants 

for key drivers
• Functional impact #1: Coding

• ALoFT: Annotation of Loss-of-Function 
Transcripts. LOF annotation as a complex 
problem. 

• Finding deleterious LoF SNVs
• Frustration as a localized metric of SNV 

impact. Differential profiles for oncogenes 
vs. TSGs

• Functional impact #2: Non-coding
• FunSeq integrates evidence, with an 

entropy based weighting scheme

• Recurrence #1: 
Statistics for driver identification 
• Background mutation rate significantly varies & is 

correlated with replication timing & TADs
• Developed a variety of parametric & non-parametric 

methods taking this into account
• LARVA uses parametric beta-binomial model, explicitly 

modeling covariates
• MOAT does a variety of non-parm. shuffles (annotation, 

variants, &c). Useful when explicit covariates not available. 
Slower than but speeded up w/ GPUs

• Recurrence #2:
(Low-power) application to pRCC
• WGS finds additional facts on the canonical driver, MET. 

Other suggestive non-coding hotspots.
• Tumor evolution analysis of the timing of key mutations 

helps with classification
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github.com/gersteinlab/Frustration
S Kumar, D Clarke

github.com/gersteinlab/MrTADfinder
KK Yan, S Lou

VAT.gersteinlab.org

L Habegger, S Balasubramanian, 
DZ Chen, E Khurana, A Sboner, 
A Harmanci, J Rozowsky, D Clarke, M Snyder

ALoFT.gersteinlab.org

S Balasubramanian, Y Fu, 
M Pawashe, P McGillivray, M Jin, J Liu, 
KJ Karczewski, DG MacArthur

FunSeq.gersteinlab.org

Y Fu, E Khurana, Z Liu, 
S Lou, J Bedford, XJ Mu, KY Yip, 

pRCC
S Li, B Shuch

LARVA.gersteinlab.org

L Lochovsky, 

J Zhang, 
Y Fu, E Khurana

MOAT.gersteinlab.org

L Lochovsky, 
J Zhang

Acknowledgments Hiring 
Postdocs.

See
Jobs.gersteinlab.org
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Info about this talk

General PERMISSIONS
• This Presentation is copyright Mark Gerstein, Yale University, 2016. 
• Please read permissions statement at 

gersteinlab.org/misc/permissions.html .
• Feel free to use slides & images in the talk with PROPER acknowledgement (via citation to 

relevant papers or link to gersteinlab.org). Paper references in the talk were mostly from 
Papers.GersteinLab.org. 

PHOTOS & IMAGES 
For thoughts on the source and permissions of many of the photos and clipped images in this 
presentation see streams.gerstein.info . In particular, many of the images have particular EXIF 
tags, such as  kwpotppt , that can be easily queried from flickr, viz: 
flickr.com/photos/mbgmbg/tags/kwpotppt 


