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Personal Genomics
as a Gateway into Biology

Personal genomes will soon become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Personal Genomics
as a Gateway into Biology

Personal genomes will soon become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Key variants will increasingly play essential roles in precision medicine
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Modified from A. Zehir et al, Nat. Med (2017)
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Canonical model of drivers & passengers in cancer

Drivers
directly confer a selective growth advantage to
the tumor cell.

A typical tumor contains 2-8 drivers.
identified through signals of positive selection.

Existing cohorts of ~100s give enough power to
identify

Passengers
Conceptually, a passenger mutation has no
direct or indirect effect on tumor progression.

There are 1000s of passengers in a typical
cancer genome.

[Vogelstein Science 2013. 339:1546]
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Prioritizing key
variants identifies
drivers to better
enable more precise
diagnostics and
targeted therapies

Top: Raphael, et al., Genome Med. (2014)
Bottom: Modified from Zehir et al, Nat. Med (2017)
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Prioritizing somatic variants:
Approaches to identifying key variants through functional impact & recurrence

* |ntroduction

Large growth in cancer genome data

Mining the data to prioritize variants
for key drivers

« Functional impact #1: Coding

ALOFT: Annotation of Loss-of-Function
Transcripts. LOF annotation as a complex
problem.

Finding deleterious LoF SNVs
Frustration as a localized metric of SNV

impact. Differential profiles for oncogenes

vs. TSGs

+ Functional impact #2: Non-coding

FunSeq integrates evidence, with an
entropy based weighting scheme

Recurrence #1:
Statistics for driver identification

Background mutation rate significantly varies & is
correlated with replication timing & TADs

Developed a variety of parametric & non-parametric
methods taking this into account

LARVA uses parametric beta-binomial model, explicitly
modeling covariates

MOAT does a variety of non-parm. shuffles (annotation,
variants, &c). Useful when explicit covariates not available.
Slower than but speeded up w/ GPUs

Recurrence #2:
(Low power) application to pRCC

WGS finds additional facts on the canonical driver, MET.
Other suggestive non-coding hotspots.

Tumor evolution analysis of the timing of key mutations
helps with classification
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Variant Annotation Tool (VAT)

VCF Input

Output:
« Annotated VCFs
- Graphical representations of
functional impact on
transcripts
Access:
«  Webserver

« AWS cloud instance
«  Source freely available

Virtual Machine (VM) | 3 disabled Scalable VAT User
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)
VAT 1/0 i S3enabled i VM1 i
Executables Layer '\:\ Input L)
I I : Bucket R ]
] ! VM2 Master
VAT Web Application E Output \I_______________-_-_:
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- - o J —
Graphical representation of genetic variants
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vat.gersteinlab.org

Habegger L.", Balasubramanian S.”, et al. Bioinformatics, 2012
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Complexities in LOF annotation

Impact of a SNP on alternate splice forms

— == Isoform 1
- (soform 2

TAﬁects only Isoform 1

Transcript isoforms,

distance to stop, Case 1
functional domains,

protein folding,

Isoform 1
etC- Reference
_- Isoform 2

Balasubramanian S. et al., Genes Dev., '11 lA"eC‘S both isoforms
Balasubramanian S.*, FuY.* et al.,, NComms., '17
Case 2 ——. : Isoform 1
Isoform 2
SLC2A2 *
1KG
ENSTO00000469787 m—mumm -1
—_— 1
ENST00000497642 Hi——— S
HGMD [ -1
1 ENSTO00000382808
ENST00000314251
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Annotation of Loss-of-Function Transcripts (ALoOFT)

Input
VCF file

Runs on top of VAT l

Annotate pLoF variants
with variant and transcript specific features

Output: C Mismapping)— C Functional )—

Segmental duplication; NMD prediction; Loss of functional, structural
. H H d 3 I domains, disordered regions, post translational
o I m paCt SCO re . ben Ig n O r d eleterl OU S . peeucogene parees modification sites; gene expression in GTex...

Annotation Issue
(Eonstionisis)

Non-canonical splice site;

Y Confidence level P e GERP score; dN/dS; 1000G, ESP6500 allele

frequency; heterozygosity of genes...

. An n Otated VC F . Shortest path to disease genes; network

centralities...

Pathogenicity prediction

Access:

Prediction model

e Software package: aloft.gersteinlab.org e on e, demivnt s eceshe

e GitHub: github.com/gersteinlab/aloft +
Annotated fel;l\ﬁ':s for pLoFs
3 pathogenicity scores for premature stop and frameshift variants

©0.chr pos ref alt  effect gene dominant benign recessive prediction Confidence
1866453 C T prematureStop SAMDT 002 006 092 Recessive  High

Balasubramanian S.*, FuY.* et al.,, NComms., 17
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LoF distribution varies as expected

by mutation set (from healthy people v from disease)

pLoF variant fraction

= 1KG (AF < 1%) Fraction of variants
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Balasubramanian S.*, FuY.* et al.,, NCommes., 17
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cancer genes vs. LoF tolerant genes

—8—504 cancer genes —e— 387 LoF-tolerant genes

ALOFT identifies deleterious

somatic LOF VariantS —o— 504 random genes —e— 387 random genes
Cancer genes: c
TR
« COSMIC consensus: =
* Enriched in deleterious LoFs. 2
©
©
>

LoF tolerant genes:
* LoF in the 1KG cohort. . -
» Depleted in deleterious LoFs. -

0O 01 02 03 04 05 06 07 08 09 1

percentage pf somatic pL

Bal i K FuY.* etal, NC ., 17 .
alasubramanian S.*, Fu et al.,, NComms., 1-benign ALOFT score
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ALOFT refines cancer
mutation characterization

20/20 rule ALOFT stratification

o
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1

8

—8
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percent deleterious LoFs
20

o o
T

TSG non-TSG

Vogelstein et al. '13: if >20% of mutations in gene
inactivating - tumor suppressor gene (TSG).

ALOFT further refines 20/20 rule predictions.

Balasubramanian S.*, FuY.* et al., NComms.,'17
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Prioritizing somatic variants:
Approaches to identifying key variants through functional impact & recurrence

* |ntroduction

Large growth in cancer genome data

Mining the data to prioritize variants
for key drivers

« Functional impact #1: Coding

ALOFT: Annotation of Loss-of-Function
Transcripts. LOF annotation as a complex
problem.

Finding deleterious LoF SNVs
Frustration as a localized metric of SNV

impact. Differential profiles for oncogenes

vs. TSGs

+ Functional impact #2: Non-coding

FunSeq integrates evidence, with an
entropy based weighting scheme

Recurrence #1:
Statistics for driver identification

Background mutation rate significantly varies & is
correlated with replication timing & TADs

Developed a variety of parametric & non-parametric
methods taking this into account

LARVA uses parametric beta-binomial model, explicitly
modeling covariates

MOAT does a variety of non-parm. shuffles (annotation,
variants, &c). Useful when explicit covariates not available.
Slower than but speeded up w/ GPUs

Recurrence #2:
(Low power) application to pRCC

WGS finds additional facts on the canonical driver, MET.
Other suggestive non-coding hotspots.

Tumor evolution analysis of the timing of key mutations
helps with classification
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Complexity of the second order
erlstration calculation

MD-assisted free energy calculation (AG)

N~ d N-d
R ) R,
Second order frustration calculation (AF) a| ?VT} i ;;V
i

H Landscap
5 A
() First order frustration calculation (F) MuT

EMUT

MUT i
un n(E)
Accuracy
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[Kumar et al, NAR (2016)]

Comparing AF values across different
SNV categories: disease v normal

b
Gain of ¥ ¥ 4

.Aslra(ion

1KG ExAC HGMD 1KG EXAC HGMD
Core residues Surface residues
Normal mutations (1000G) tend to unfavorably
frustrate (less frustrated) surface more than core,
but for disease mutations (HGMD)
no trend & greater changes
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[Kumar et al, NAR (2016)]

Comparison between AF
distributions: TSGs v. oncogenes

A TSG Drivers B Oncogene Drivers
L ©F o4
< wo
<
J o o A
@ . 4
T A T A
core surface core surface

SNVs in TSGs change frustration more in core than the surface, whereas those associated with oncogenes manifest the
opposite pattern. This is consistent with differences in LOF v GOF mechanisms.
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Prioritizing somatic variants:
Approaches to identifying key variants through functional impact & recurrence

* |ntroduction

Large growth in cancer genome data

Mining the data to prioritize variants
for key drivers

« Functional impact #1: Coding

ALOFT: Annotation of Loss-of-Function
Transcripts. LOF annotation as a complex
problem.

Finding deleterious LoF SNVs
Frustration as a localized metric of SNV

impact. Differential profiles for oncogenes

vs. TSGs

+ Functional impact #2: Non-coding

FunSeq integrates evidence, with an
entropy based weighting scheme

Recurrence #1:
Statistics for driver identification

Background mutation rate significantly varies & is
correlated with replication timing & TADs

Developed a variety of parametric & non-parametric
methods taking this into account

LARVA uses parametric beta-binomial model, explicitly
modeling covariates

MOAT does a variety of non-parm. shuffles (annotation,
variants, &c). Useful when explicit covariates not available.
Slower than but speeded up w/ GPUs

Recurrence #2:
(Low power) application to pRCC

WGS finds additional facts on the canonical driver, MET.
Other suggestive non-coding hotspots.

Tumor evolution analysis of the timing of key mutations
helps with classification



Funseq: a flexible framework to determine

functional impact & use this to prioritize variants

Annotation (tf binding
sites open chromatin,
ncRNAs) & Chromatin

Dynamics

Conservation
(GERP, allele freq.)

Mutational impact
(motif breaking, Lof)

Network (centrality
position)

Non-coding annotation

o ® oo m ® SNV W Indel
o

l I \

\

\

\

\

\

Degree of negative selection

Motif disruptive score

breaking | \ |

| \ } :( )/

[ \

| | \ Degree of network centrality
Enhancer/

Promoter [ ‘

Khurana et al., Science ('13)]

[Fu et al., GenomeBiology ('14), ,
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HOT region s

F u n Se q .gersteinlab.org Sensitive re.gion I

Polymorphisms

‘1 Genome [ ] |

wa = 1 + palogapa + (1 = pa)log, (1 = pa)

« Entropy based method for weighting
consistently many genomic features

« Practical web server
» Submission of variants & pre-
computed large data context from

= | e uniformly processing large-scale
3 NE; ' datasets
0  User-optional input
T2 user-speitic inputioutput

[Fu et al., GenomeBiology ('14)]
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Mutation recurrence
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Cancer Type 1

Cancer Type 2

Cancer Type 3
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mutation load (standardized)

N

(&)
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-
o

0.5

-0.5

| 1 Il 1 Il

%80000 -400000 -200000 boundary 200000 400000 600000
genomic distance from the TAD boundary

[Yan et al.,, PLOS Comp. Bio. (‘17); S. Li et al., PLOS Genetics (‘17)] ]

Mutation% in early replicated regions

°® ®
. I
[ #\
@
o | ’ ®
- —
o
o
o %
.- p<0.031
%
®
~
wildtype mutated

Chromatin remodeling failure leads to more mutations in
early-replicating regions

Variation in somatic mutations
is closely associated with
chromatin structure (TADs) &
replication timing
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input: contact map W null model E

mrTADFinder:

Identifying TADs at multiple ‘
resolutions by maximizing % B i
modularity 4 )

VS approp riate null Choose a particular resolution y
‘ptimize Qover all possible panitiory

1
Q= T 2:(VVZJ —YEi;)05,0;  V:resolution parameter

i
Multiple runs to define boundary scores

y=2 for all pairs of adjacient bins )
' ©
i o
22.0 240 260 280 300 320 340 36.0 consensus boundaries based on «
. - : : : . - the boundary scores =
3
y=2.5 §
22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0 g’;
' consensus TADs output 5
et
o
y=3 @

1
22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0 [Yan et al., PLOS Comp. Bio. (“17)] m
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Cancer Somatic Mutation Modeling

PARAMETRIC MODELS

» Suppose there are k genome

Model 1: Constant Background
Mutation Rate (Model from
Previous Work)

x; * Binomial(n;,p)

elements. For element i, define:
— n;: total number of nucleotides

— x;: the number of mutations within the
element

Model 2a: Varying Mutation Rate
with Single Covariate Correction

x; + Binomial(n;,p;)

D; ¢ Beta(,u|Rl-,a|Ri)

,u|Rl-, O'|RL- : constant within the same
covariate rank

— p: the mutation rate
— Ry the covariate rank of the element

» Non-parametric model is useful
when covariate data is missing for
the studied annotations

+ Also sidesteps issue of properly

Model 2b: Varying Mutation Rate
with Multiple Covariate Correction
x; + Binomial(n;,p;)

p; ¢ Beta(,u|Rl-,a|Ri)

,u|Rl-, O’lRi : constant within the same
covariate rank

identifying and modeling every
relevant covariate
(possibly hundreds)

[Lochovsky et al. NAR (15)]

Assume constant background
mutation rate in local regions.

Model 3a: Random
Permutation of Input

Annotations
Shuffle annotations within local

region to assess background
mutation rate.

Model 3b: Random
Permutation of Input Variants

Shuffle variants within local
region to assess background
mutation rate.

[Lochovsky et al. under review]
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MOAT-a: Annotation-based permutation

% annotation
W permutations

d_max

| = original variants

>

- - o] - w— = ==

.

[Lochovsky et al. under review]
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MOAT-v: Variant-based Permutation
% annotation

Can preserve tri-nt context in shuffle | = original variants

permuted variants
bin width W

[Lochovsky et al. under review]
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MOAT-s: a variant on MOAT-v

* A somatic variant simulator

« Given q[set of input variants, shuffle to new locations, taking genome structure into
accoun
I

original variants

o L = permuted variants
Binning whole genome

Marking equivalence classes (bins with similar covariate vectors)

Overlaying variants (with tri-nucleotide indexing)

I | l | | | | [ |
: 2. 2 333 33 4444444 55 6 7
Shuffling variants R ——— .
| L g1 ¢ B ey A ¢ L |
2 5 1 43 3444343 4 2 6 5 7
443

[Lochovsky et al. under review]

38 - Lectures.GersteinLab.org



Funseq Integration with MOAT

* Run Funseq over the whole genome

* Produce signal track that is the maximum score at each position
80 8

T e a1

« Calculate an annotation signal by summing the intersecting variants’ scores

L L 30+20=50 L L L | | L L
T T - T T T 1 1 T

» Use the same procedure on permuted data

m L1

« These are background scores to determine if the observed score is
significantly elevated

[Lochovsky et al. under review]
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[Lochovsky et al. NAR (*15)]

LARVA Model Comparison

« Comparison of mutation count frequency implied by the binomial model (model 1) and the
beta-binomial model (model 2) relative to the empirical distribution

» The beta-binomial distribution is significantly better, especially for accurately modeling
the over-dispersion of the empirical distribution

density
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Adding DNA replication
timing correction
further improves the
beta-binomial model

=

probablity
00 +0.2 +0.4 +0.6

+0.2

P
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1

Normalized Mutation counts
08

0.6
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1
Normalized replication timing
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0

observed-repTiming bottom 10%
beta—binomial-repTiming bottom 10%
binomial-repTiming bottom 10%
observed-repTiming top 10%
beta—-binomial-repTiming top 10%
binomial-repTiming top 10%

O0EEOnm

Early replicating regions

require little correction

8 10 12 14
somatic mutation count

I J J ' require large correction
. h B B s e e e — — — —

O i reai
I]mm] Late replicating regions
4 6

30 40 50 60 70
Bin Index

[Lochovsky et al. NAR ('15)]
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[Lochovsky et al. NAR ('15)]

adjusted P w/. correction

4.5
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LARVA Results

TSS LARVA results
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MOAT: recapitulates LARVA
with GPU-driven runtime scalability

SLC3A1 Cysteine transporter SLC3A1 promotes breast cancer 28382174

tumorigenesis
ADRA2B  reduce cancer cell proliferation, invasion, and migration 25026350
SIL1 subtype-specific proteins in breast cancer 23386393
TCF24 NA NA
AGAPS significant mutation hotspots in cancer 25261935
TMPRSS13 | Type II transmembrane serine proteases in cancer and viral 19581128
infections

EROIL Overexpression of EROI1L is Associated with Poor Prognosis 26987398
of Gastric Cancer

MOAT’s high mutation burden elements
recapitulate LARVA's results & published
noncoding cancer-associated elements.

Computational efficiency of MOAT's
NVIDIA™ CUDA™ version, with
respect to the number of permutations,
is dramatically enhanced compared to
CPU version.

Number of Fold speedup of
permutations CUDA version

1k 14x
10k 100x
100k 256x
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Prioritizing somatic variants:
Approaches to identifying key variants through functional impact & recurrence

* |ntroduction

Large growth in cancer genome data

Mining the data to prioritize variants
for key drivers

« Functional impact #1: Coding

ALOFT: Annotation of Loss-of-Function
Transcripts. LOF annotation as a complex
problem.

Finding deleterious LoF SNVs
Frustration as a localized metric of SNV

impact. Differential profiles for oncogenes

vs. TSGs

+ Functional impact #2: Non-coding

FunSeq integrates evidence, with an
entropy based weighting scheme

Recurrence #1:
Statistics for driver identification

Background mutation rate significantly varies & is
correlated with replication timing & TADs

Developed a variety of parametric & non-parametric
methods taking this into account

LARVA uses parametric beta-binomial model, explicitly
modeling covariates

MOAT does a variety of non-parm. shuffles (annotation,
variants, &c). Useful when explicit covariates not available.
Slower than but speeded up w/ GPUs

Recurrence #2:
(Low power) application to pRCC

WGS finds additional facts on the canonical driver, MET.
Other suggestive non-coding hotspots.

Tumor evolution analysis of the timing of key mutations
helps with classification



Power (%)

Power, as an issue in driver discovery

0 200 400 600 800 1,000
Sample size

25,000 promoters

650-bp Binding
promoter site

—{- Ty 8— Rheinbay et al.

100,000 promoters
— DS A iy ARy —

25,000 promoters Better

annotation or
large number
450-bp of samples
promoter could help.

[Kumar & Gerstein, Nature ('17)]
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An (underpowered)
case study: pRCC

» Kidney cancer lifetime risk of
1.6% & the papillary type (pRCC)
counts for ~10% of all cases

 TCGA project sequenced 161
PRCC exomes & classified them
Into subtypes

— Yet, cannot pin down the cause for
a significant portion of cases....

*35 WGS of TN pairs,
perhaps useful?

[Cancer Genome Atlas Research Network N Engl J Med. (‘16) ]

C2c1 C2b
{CIMP) !

RPPA 2
microRNA 1
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mRNA 2
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CIMP !
RPPA 3 III1III'IIIIIII I1IIIII | [ i” I lﬁl
]
|

microRNA 2

microRNA 3 | I '.l
Copy number 3 I
RPPA 1 I
microRNA 4 | . [ ||| | |

mRNA 3 : || || |||| || |

e | |||I ||'|‘Mﬂ JHHW i

No. of Cases 9 | 22 . .

Histologic Type Stage of Tumor
Type 1 PRCC Type 2 PRCC | m
M Unclassified PRCC m mwv
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‘MET is long known pRCC driver
‘In MET, TCGA found somatic SNVs, dup-
lications & an alt. splicing event as drivers 43/161).

*In addition, from 35 WGS we found
—A noncoding hotspot associated with MET
—Lack of SV and breakpoint disrupting MET
—Germline SNP (rs11762213) predicts survival

in type 2 patients

Tyr-Kinase
MET:

Known Facts
& New Results

B
A MET
Noncoding exon Coding SNV
(5UTR) l (germline) . Proposed promoter I Retrotransposon p <0.034
Noncodin Proposed regulatory ‘
Coding exon l oy 9 @) regions :
116339283 (rs11762213) 2 o
3 o 7 :
E .
[ Yroceecccercctccccccccncees -+
o
116312044 116324318 116342376 116352009 =
2 kb =
- e ¥
116336619 a °
16343120 116354616
N
o
chr7 T T > — GG
116,310,000 (9 kb) 116,350,000 L1PA2 116,370,000 ---- GA
Noncoding exon exon2 SINE: MIR exon3
' o
g -
f T T
0 1000 2000 3000

Time(days)

[A. Gentile, L.
Trusolino and PM.
Comoglio, Cancer
and Metastasis

Reviews (‘08); S. Li,

B. Shuch and M.
Gerstein PLOS
Genetics (‘17)]
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[Li et al. PLOS Genetics (‘17)]
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Tumor Evolution: Highlight the Ordering of Key Mutations

Normal MRCA
cell

A

Distant
metastasis
Time point X: Time point Y:
+ Driver mutations diagnosis and distant and
treatment initiation  local relapse

'
Time

Yates et al, NRG (2012)
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Construct evolutionary trees in pRCC

« Infer mutation order and tree structure based on mutation
abundance (PhyloWGS, Deshwar et al., 2015)

-  Some of the key mutations occur in all the clones while others
are just in some parts of the tree

DNMT3A: premature stop KDME6A: missense
NEATT: noncoding
SMARCA4: missense

0.2 Mutation
e distance

Germline

Population
(%)

Mutation

[S. Li, B. Shuch and M. Gerstein PLOS Genetics (‘17)]

50 -



BIACINs
¥=0ins

|

Tomaiie

¢

ToR B 1T

HERPUD 1re

"

TeanIC

WuFZters

-

TeGs M

Breme

"

:

T

TGz gc:

¥BTIre
FANCORS

—@>

oG a6 (T

TeaMIaz

uiure
g
ERFItne

TeasMIAT

e

DNUTHpreS
RANBF2rs

e s

Teaen ™

=
wize

T s

L
LERTS

TS

Teaazaz.

—@

Teamm

—@

e

!

Teasarm

TaaLa T

ATRrs
werre

Teasacazn

worITE
¥sMrc

P

TeasL &

TRUDrE
WETITC
TN TE

CATCITS
TRIP trs.

Teasata TG

HERPUD 11

l
‘

eG4 412

‘
L

TGN AR

3P0 7%

AT
SFairs

GF HUrs i

ey

TGN

ERRFITC
FATITS
Eran

»!

[S. Li, B. Shuch and M. Gerstein PLOS Genetics (‘17)]

ERFIne
=6381rs

ROS1rs
NERTIrC
NERTIRE

TGN 110

PE3ITS
NCHrs

NUP214rs
FATITE

prney

TeaNCY

Mutation Populations

distance

(%)

0.5
—

Germline

51 - Lectures.GersteinLab.org



Tom At (E

"i@

Teaa T

TeasaL T
BIACIrs
¥Ehirs
Tomaie TGz gc:
¥BTIre
FANCORS
ToR B 1T oG a6 (T
JERPUD 1Te
TeanICHi TeGsIC Az
uiure
WuFZters et
i ERRFItnC ?

 keme

:

TeasMIAT

Tears s

-

ez
[

e

e s

L
LERTS

.

Toms-T

Tear

!

Teaa.

To3ae- 41

e
wEtrs

o ».

P

ATRrs
were

I

wostre

¥ERTITC

pr———

u
OPHNrs

=StaLins’

;S?

Teasata TG

HERPUD 11

l
‘

ERFItne
=381rs

— @

ROS1rs
NERTIrC
NERTIRE

eG4 412

TGN AR

ey

nz1Are
IZ1R ¢
uRETe

.

TGN I

ERRFITC

Eran

[S. Li, B. Shuch and M. Gerstein PLOS Genetics (‘17)]

TGN 1

PE3ITS

3
:

e
NUP21ers
FATITE

Teasucazg

.

P

FOFAZTS
=F81Te

Mutation Populations
distance (%)
0.5
—_

Germline

52 - Lectures.GersteinLab.org



Tree topology correlates with molecular subtypes

Type 2 Unclassified

Histological type/Patient ID rrrrrrﬂmmﬂmmﬂ 15 20(23| 24| 25|26|27| 25| 29| 30|31 |32| 33| 34|35
coca [[[[[[DDDD%%DI]I]]II H H

Copy humber gain
Somatic mutation
Splicing event

Germline mutation
BAP1/PBRM1/SETD2 mut.
CDKN2A copy number loss -
SDHB deletion

Promoter mutation

1-2 intronic mutation

NEAT1 somatic mutation
|§RRFI1 promoter mutation
Whole genome mutation rate,
DHS mutation percentage

g [SV number

* |[Evolution tree topology ‘ NA

\ i Long branches I
. Affecled I:IU"E‘"““-'" N4 BINo branch, less subelone

GOCA

< D C2a . C2b
Mutation rate/percentage/SV number
. High El Mediurn D Low

MET

Coding

OTHs

Noncoding
OTHs | MET

RKutaticn

[Li et al., PLOS Genetics (‘17)]
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Prioritizing somatic variants:
Approaches to identifying key variants through functional impact & recurrence

* |ntroduction

Large growth in cancer genome data

Mining the data to prioritize variants
for key drivers

« Functional impact #1: Coding

ALOFT: Annotation of Loss-of-Function
Transcripts. LOF annotation as a complex
problem.

Finding deleterious LoF SNVs
Frustration as a localized metric of SNV

impact. Differential profiles for oncogenes

vs. TSGs

+ Functional impact #2: Non-coding

FunSeq integrates evidence, with an
entropy based weighting scheme

Recurrence #1:
Statistics for driver identification

Background mutation rate significantly varies & is
correlated with replication timing & TADs

Developed a variety of parametric & non-parametric
methods taking this into account

LARVA uses parametric beta-binomial model, explicitly
modeling covariates

MOAT does a variety of non-parm. shuffles (annotation,
variants, &c). Useful when explicit covariates not available.
Slower than but speeded up w/ GPUs

Recurrence #2:
(Low power) application to pRCC

WGS finds additional facts on the canonical driver, MET.
Other suggestive non-coding hotspots.

Tumor evolution analysis of the timing of key mutations
helps with classification
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