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Canonical model of drivers & passengers in cancer

Drivers
directly confer a selective growth advantage to
the tumor cell.

A typical tumor contains 2-8 drivers.
identified through signals of positive selection.

Existing cohorts of ~100s give enough power to
identify

Passengers
Conceptually, a passenger mutation has no
direct or indirect effect on tumor progression.

There are 1000s of passengers in a typical
cancer genome.

[Vogelstein Science 2013. 339:1546]
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Conceptual extension

of the canonical model of drivers & passengers
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Mutational processes carry context-specific signatures
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most comprehensive resource for cancer

whole genome analysis

PCAWG

Goal of PCAWG:

Jointly analyzing ~2800 whole genome

regions of cancer genomes in cancer
tumor/normal pairs

To understand role of non-coding
progression.

Union of TCGA-ICGC efforts
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» > 580 researchers

» 16 thematic working groups
» ~30M total somatic SNVs
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A case study: pRCC e

» Kidney cancer lifetime risk of

1.6% & the papillary type (pRCQC) —

microRNA 1
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[Cancer Genome Atlas Research Network N Engl J Med. (‘16) ]
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Passenger mutations in >2500 cancer genomes:
Overall molecular functional impact

* Introduction
- Background: driver-and-passenger model
(w/ conceptual extension) & mutational
spectra & signatures

- Data source: PCAWG comprehensive WGS
on >2.5K + focus on 35 pRCC WGS

- Overall functional impact of variants

- FunSeq entropy-weights multiple features
to evaluate the functional impact of SNVs

- Investigating how the fraction of high-
impact (non-strong-driver) SNVs scales &
how it relates to survival

- Differential burdening from various
mutational processes

- Diff. burdening of TF sub-networks, results
from spectra & signatures differentially
affecting binding motifs

- High & low impact mutations assoc. w/ diff.
signatures

- Number of mutations in DHSes assoc. w/
specific chromatin mod. mutation
- Functional impact & tumor evolution

- Differences in functional impact betw. early
& late passenger mutations (eg in TSGs &
oncogenes)
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Funseq: a flexible framework to determine
functional impact & use this to prioritize variants
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HOT region
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Genome [ ] [

Wa = 1 + palogopa + (1 = pa)log, (1 = pya)

* Entropy based method for weighting
consistently many genomic features

* Practical web server
AN RN AN A NN AN AN REN e Submission of variants & pre-
e [ computed large data context from

Overview

+ Note: This online web server is based on Funseq2

This tool is specialized to prioritize somatic variants from cancer v2.10. In addition to on-site calculation, we also provide . .
hole It contai + 1) bui latest updates, scores for all possible noncoding SNVs of
Whole genome sequel contain two components : 1) buiiding GRCh37/hg19 under ‘Downloads' (without annotation and
data context from variol e recurrence analysis). —
provided downloadable scripts for users to e dat Jout Fle: (onty for 18 SNV
context (found under 'Downloads). The var jon step is nput File: (only for hg %) )
downloadable, and also implemented as web server (Right Panel), Choose File | No file chosen -
I: with pre-processed data context. BED or VCF files as input. Sample input file d t S e t S
Process e Output Format: a a
bed §
Pre-collected data 4+ Input File - BED or VCF formatted. Click the “green" button to add MAF:
multple files. With multiple files, the tool will do recurrent analysis. o
0  User-optional input (Note: for BED format, user can pul varians from mufile genomes Winr aleefoquency reshod o s polymorpisms from
into one file, see Sample input file .) 1KG (value 0~1)

w i + Recurrence DB - User can select particular cancer types from the Cancer Type from Recurrence DB: Summary table
3 Uur-opedﬁc npurloutput database. The DB will continue to be updated with newly-available All Cancer Types s
WGS data.

+ Gene List - Option to analyze variants associated with a particular Add a gene list (Optional)

[Fu et al., GenomeBiology ('14)]

set of genes. Note: Please use Gene Symbols, with one row per Add differential aene expression analysis (Ootional)
e
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Overall functional impact

distribution of
PCAWG mutations
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* Funseq molecular functional impact
of ~30M variants
in >2500 PCAWG samples
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In many PCAWG cohorts, we observe the fraction of impactful
“passengers” decreases with increase in total mutation burden.
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Mutational burdening of TF-subnetworks due to SNVs
breaking & creating binding sites

Loss of motif —
-
C Wild type —{TATHTAT 4 )

) ! |
2
R

01 3 5 7 9 111315

Mutated —|{TATETAT [

Position

LOSS

Wild type —

Promoter l Gene CDS

Gain of motif

Bits

2
L A mRNA
0

—_—
1 2 3 4 5 6 —
Positi
osttion Mutated —{CGGARG

Khurana et. al., Nature Reviews Genetics ('16)

log
enrichment

> 0.042
0.036
0.030
0.024
0.018
0.012
0.006
0.000
-0.006

B <-0012

cancer type

lymphatic
kidney
liver
colorectum
uterus
head
bone
skin
cervix
bladder
reast
myeloid
prostate
CNS
thyroid
biliary
esophagus
stomach
ovary
lung
pancreas

lymphatic
* Kidney
liver
colorectum
uterus
head
bone

skin

cervix
bladder

reast ||
myeloid [

prostate
CNS
thyroid
biliary
esophagus
stomach
ovary

lung
pancreas

= E
(=[]
0 ] W [ ]
- ||
IRk i
I
- ENE EEN
:
InE I
] | H | T
|
e HEN %é q
=
B EoEA
E -
[ [
|
[ [

— - - - P - ——— T —or—m ——— g - N+
QSSNQEELx%tﬁdgoéEx9Q§§§?m¢ﬂ&%m$§%88<Ix840lo%é@gSEmﬁ§8iﬂm:%>m$398§m“E%ﬁﬁoﬁmdkgmml
CIXWZFrZNZaxX] <L o NOQMWAWNL XX OCRX X X0 XoEZzaNZL<is>rIruigz e r<uenan=o<ca
mOON3<IEziogﬁgwmwmzmm<w§m§, Dm%imoo§§06oo§o§é§80 <08§Zz = TLIcazUzEzrscr ™ akn
a ® T TToPL=F ko, OF¥guuiIFLoltizr2r2"L O § &2 T z7o uk

) L. o
Y transcription factor

14 = Lectures.GersteinLab.org



ing

differential TF burden

correlates with mutational spectrum

Kidney cancer as an example
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Mutations per millian
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Overall molecular functional impact

* Introduction
- Background: driver-and-passenger model
(w/ conceptual extension) & mutational
spectra & signatures

- Data source: PCAWG comprehensive WGS
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As expected, drivers are enriched in
earlier subclones. Overall, no such
enrichment among passengers.

High impact passengers are slightly
enriched among early subclones.

Particularly, passengers in tumor
suppressor (in contrast to oncogenes,
which require specific mutations).
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Functional impact in PCAWG (PanCancer.info) See gersteinlab.org/jobs !
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