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Where is Waldo?
(Finding the key mutations in “3M Germline variants &

~5K Somatic Variants in a Tumor Sample)
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Non-coding Annotations: Overview

Features are often present on multiple "scale” (eg elements and connected networks)

Sequence features, incl. Conservation

) }

Large-scale sequence
similarity comparison

Functional Genomics

Chip-seq (Epigenome & seq. specific TF)
and ncRNA & un-annotated transcription

v

Identify large blocks of
repeated and deleted

| sequence:

Signal processing of raw
experimental data:

» Removing artefacts
» Normalization
» Window smoothing

» Within the human
reference genome

!

« Within the human
population

+ Between closely related
mammalian genomes

Segmentation of processed
data into active regions:

* Binding sites

» Transcriptionally active

v

regions
Y

dentify smaller-scale
repeated blocks using
statistical models

Group active regions into
larger annotation blocks
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Multi-scale Element Annotation & Variant Prioritization

« Characterizing » Features of
Regulatory Sites Multi-resolution TADs
at |\/|u|tip|e Scales - Specific TFs & HMs associated

- Multi-scale "site" calling Wtitg'fIAD E[)Ounldaries
(with Music) at different scales

— Using high resolution - Assoc. strong enough to build a

conservation information to find predictor
sensitive sites - HOT regions at boundaries

» Characterizing TADs

at Multiple Scales * FunSeq Software Tool for

_ Using modularity for Variant Prioritization
identification - Systematically weighting all the
- Developing an appropriate features, for non-coding

null expectation prioritization
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Summarizing the Signal:
"Traditional” ChipSeq Peak Calling

ChiP
Generate & threshold the signal

profile to identify candidate
target regions

—  Simulation (PeakSeq),

—  Local window based Poisson (MACS), Threshold
—  Fold change statistics (SPP) -

Potential Targets LE Lm0 T | T e .

Normalized Control

Score against the control

Significantly Enriched targets | 1Nl L1

Now an update: "PeakSeq 2" => MUSIC



Multiscale Analysis, Minima/Maxima based

Coarse Segmentation

p36.31 p36.13 p35.3

p34.2 p323 p31.3

p3l.1 p223 p2l.3

pi33 pl2 qil  qiZ2 q2l1  q22 q241 q252 q3l.1

Q321 q323 q4211  qd423 qda

o

27,140 kb 27,160 kb 27,180 kb 27,200 kb 27,220 kb 27,240 kb 27,260 kb 27,280 kb

204 kb

27,300 kb 27,320 kb

Harmanci et al, Genome Biology 2014, MUSIC.gersteinlab.org
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Multiscale Decomposition

Increasing Scale
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Finding "Conserved” Sites in the Human Population:

Negative selection in non-coding elements based on
Production ENCODE & 1000G Phase 1

Broad Categories
Coding E H

Genomic Avg

Enhancer

*Broad categories of
regulatory regions
under negative

(Non-coding RNA) ncRNA

- ceeoaeas - cemweeeae
T

(DNase | b
hypersensitive DHS SeleCt|On
sites) { Tess (TFSS: Sequence- oRelated {o:
T o specific TFs)
ranscription
factor bi:din TFBS < HEEREIE] ENCODE, Nature, 2012
. 8 Ward & Kellis, Science, 2012
sites) ; Mu et al, NAR, 2011
\ '
Pseudogene —
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056 058 060 062 064 066 0.68

Fraction of rare SNPs
Depletion of Common Variants
in the Human Population [Khurana et al., Science (‘13)]



A Broad Categories B

Specific Categories

Genomic Avg 27M SNPs |
Coding  0.27M

>
Missense | 0.15M
Synonymous | 0.12M
UTR| 0.4M

Enhancer [

DHS | 4.8M b

TFSS

TFBS

General

Chromatin

TF Families (motifs)
Coding 5 H
HMG
bz/P°
sTAT [

e

H MADs-boxe
NR

Homeodomain®

]

e

0.56 0.6 0.64 0.68 0.72
Fraction of rare SNPs

Sub-categorization possible
because of better statistics from
1000G phase 1 v pilot

Differential
selective
constraints
among specific
sub-categories

[Khurana et al., Science (‘13)]



~0.4% genomic coverage (~ top 25)
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~0.02% genomic coverage (top 5)
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Genomic Avg  27M SNPs
TF Families (motifs)
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Fraction of rare SNPs

Sub-categorization possible
because of better statistics from
1000G phase 1 v pilot

Defining
Sensitive
non-coding
Regions

Start 677 high-

resolution non-coding
categories; Rank & find
those under strongest
selection

[Khurana et al., Science (‘13)]
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3D organization of genome

Tertiary
structure

30nm chromatin
Secondary structure

Nucleus with
distinct territories

"We finished the genome map, now
we can't figure out how to fold it."

image credit: lyer et al. BMC Biophysics 2011,

cartoonist John Chase 10nm chromatin

Primary Structure

image credit: lyer et al. BMC Biophysics 2011
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Topologically associating domains (TADs)

TADs have apparent
hierarchical organization
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Local TAD boundary disruption
activates oncogene

O Enhancer
:-— Promoter and gene
N o Example: IDH mutant gliomas
CTCF binding site  gxample: T-ALL Flavahan et al. Bernstein Nature 20[l6
o Chromatin loop Hnisz et al. Young Nature 2016

TAD boundary disruption
Deletion of CTCF sites
Methylation of CTCF site

Activation of oncogene
Current Opinion in Genetics & Development

Valton and Dekker Curr. Opin. Genetics and Development 2016



Network modularity

degree of i

adjacency matrix 1

0L

- 2m

number of edges

\ k.
> (W i) g

whether or not

2m Ti0; i, jare in the

1,7 ‘

expected number of
edges between i and j

same module
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Network modularity

@Q — Qma:c

Optimization problem

degree of i
adjacency matrix 1

N\ s
Q — i Z Wz kq’kj 50,7:0,. whether or not

2, 2m J i, jareinthe
1,7 ‘ same module
number of edges expected number of

edges between i and j
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Identifying TADs in multiple resolutions

network contact map i = b

chromosome R
node ) :
bin

edge Hi-C contact '

# of coverage '

connections g )

Modularity maximization . -

module domain

1 kik;
= — Wij — —2 ) do.0.
“ QmZ( 2m) 7

2,

schematic adapted from ref. [2]

[Yan et al., PLOS Comp. Bio. (in revision, ‘17); bioRxiv 097345]
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Identifying TADs in multiple resolutions

10*

103_

Modularity m
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10° 108 107 108
genomic distance d (bp)

[Yan et al., PLOS Comp. Bio. (in revision, ‘17); bioRxiv 097345]

10°

: adapted from ref. [2]
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[Yan et al., PLOS Comp. Bio. (in revision, ‘17); bioRxiv 097345]

Identifying TADs in multiple resolutions

input: contact map W null model E * % ) )
Eij = r;k;f(li —7j])

\ * Numerically solve for K’z’ in equations
1 E Eij =2Wij, for 1 = 1,2,..N
Z ,

® )

N

Choose a particular resolution y J

\thimize Q over all possible partitioy

1
Q= W Z(W” = ’7Eij )50“,]. y: resolution parameter
Y]
Multiple runs to define boundary scores
for all pairs of adjacient bins

consensus boundaries based on
the boundary scores

consensus TADs output

21 - Lectures.GersteinLab.org




[Yan et al., PLOS Comp. Bio. (in revision, ‘17); bioRxiv 097345]

Identifying TADs in multiple resolutions

input: contact map W

Optimize Q over all possible partitions

Multiple runs to define boundary scores
for all pairs of adjacient bins

consensus boundaries

output

consensus TADs

null model E

adjacient chromosomal bins

. every bin has its own domain id
"
3

a random bin is selected, update

. : is based on the neighbors’id
o, " domain id is updated, another
. bin is selected

\ choose y: resolution parameter
Q=

Lm i — VEii )80,

No more update; iteration stops
a modified
Louvain algorithm

bins are renormalzed to form
super-bins; prévious steps are
repeated

No more update;
No more renormalization
two TADs are obtained

—O0—"0—0—0—0—0— 000

increase Q7

- OO0 @& e @ e O O @

increase Q7

00— —0 090090 0 00—

00— —0—0—90 000 00—

increase Q?

N
(e—o—ojfo—o(e—o—ejfo—of

}.
)

——0 90— 00

|
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[Yan et al., PLOS Comp. Bio. (in revision, ‘17); bioRxiv 097345]

Identifying TADs in multiple resolutions

e . . a continuous segment of chromosomal bins
a modified Louvain algorithm 9

every bin has its own moduleid  —@ O O O O O O O O o—

increase Q?

arandom bin is selected, update _. O @ O ') O O O O O—

Is based on the neighbors’module )
increase Q?

meodule id is updated, another _. @ @ @ @ o r O O Q—

ncde is selected

No more update; iteration stops —’ O © . O . ’ ’ . ._

increase Q?

bins are rencrmalized to form \ [ \
super-bins; previous steps are E. 0, .J @ q \. > ‘J @ .)—
repeataed

No mere update; A A

Nec moere renormalization

two TADs are obtained —. ' ‘ . . . ‘ . ’ .—
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Identifying TADs in multiple
reSOI Uti O ns [Yan et al., PLOS Comp.

Bio. (in revision, ‘17);

hESC: chr 10

bioRxiv 097345]
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Multi-scale Element Annotation & Variant Prioritization

« Characterizing » Features of
Regulatory Sites Multi-resolution TADs
at |\/|u|tip|e Scales - Specific TFs & HMs associated

- Multi-scale "site" calling Wtitg'fIAD ?Ounldaries
(with Music) at different scales

— Using high resolution - Assoc. strong enough to build a

conservation information to find predictor
sensitive sites - HOT regions at boundaries

« Characterizing TADs

at Multiple Scales * FunSeq Software Tool for

_ Using modularity for Variant Prioritization
identification - Systematically weighting all the
- Developing an appropriate features, for non-coding

null expectation prioritization



v=2

H3K4mel H3K27ac H3K36me3  H3K27me3

H3K4me3

Enrichment of histone features at
different resolution
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‘17); bioRxiv 097345]

[Yan et al., PLOS Comp. Bio. (in revision,

Enrichment of histone features at

enrichment of peak density at boundary

different resolution
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[Yan et al., PLOS Comp. Bio. (in revision, ‘17); bioRxiv 097345]

House-keeping vs tissue-specific
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‘17); bioRxiv 097345]

[Yan et al., PLOS Comp. Bio. (in revision,

Enrichment of TF binding sites
near boundaries

3.0 - -
o—e HOT regions
! e—e XOT regions
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v
c |
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4
)
g 20 |

||
Z
E Question: Causes orf Consequences?
g 13
‘MM
LD 1 1
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Predicting TAD boundaries using
TFs binding pattern

Classification problem:

positive set negative set [Yan et al., PLOS Comp. Bio. (in
boundaries called by MITADFinder random boundaries by reshuffiing revision, ‘17); bioRxiv 097345]
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- _

_z_ T 7
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60 ENCODETFs X: Features \

—&—ACC|
—5—AUC|

Myl Hy
Logistic regression boundary | - { JL \}%%M\ :E\ﬁx
L1 4]
< . B 1 &
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- 30

boundary



Predicting TAD boundaries using
chromatin features

Which transcription factors play a role in border

formation?
=1 ~+=1,26 ~+=1.6
CTCF pu—
NIYC — TAF1 — RSSS; [r—
RAD2! = CTBP2 = MY —
CHD? — GCTCF — cTBRR?2 =
CTCF p— BCL11A —— CHD2 =
NANOG — CHD1 = F(%EH f—
CHD2 = RAD21 = RBBPS e
-2 -1 0 1 2 -4 2 0 2 -2 -1 0 1
“+=2.25 =25 =275
RAD21 J—
CHD? | RADZ21 RAD21
GCTCF — GTCF — CTCF [—
RBBPS — CHD7? _ CHD7 ——
PHF3 p— MYG — SAP30 ——
NMYC — CTBP2 — TAF1 —
BRCAI — TAF1 [r—— ciBP2 —
CHD2 s MAFK — PHF8 fr—
KDMSA - SIN3A - KDOM4A —
-1 0 1 2 1 -0.5 0 0.5 1 -1 0.5 0 05

coeff. of influence

contribution of individual factors

RAD21
CTCF
RBBPS
CHD7
MYC
SAP30
PHF8
SIN2A
KDM5A

[Yan et al., PLOS Comp. Bio. (in
revision, ‘17); bioRxiv 097345]
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Multi-scale Element Annotation & Variant Prioritization

« Characterizing » Features of
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at Multiple Scales * FunSeq Software Tool for

_ Using modularity for Variant Prioritization
identification - Systematically weighting all the
- Developing an appropriate features, for non-coding

null expectation prioritization



Identification of non-coding candidate drivers amongst

somatic variants: Scheme

Cancer genome
variants

® SNV W Indel

|

|

|
1000
Genomes - WA

screen

Non-coding annotation

iy~ —(H)C

Degree of negative selection

*e =
I ]
I ]
| ]
Hﬁi&%--" 1000 Genomes variants
[
[
[
[
T
[
[
[
[
)

[ [ I T
[ [ [
[ | [ [
[ \ [
I [ [

Sensitive - = o0 O (@] - O
e

Motif disruptive score

Occurrence in multiple samples

,
[I .-
[

Candidate driver ® [Khurana et al., Science (‘“13)]

e LD ==
Motif | |
breaking ] -
]

[ Degree of network centrality

Enhancer/ pemem—aa S . s

Promoter | ‘@ SRk
[ -” Cancer sample % & .. o (o
[ B X '
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Flowchart for 1 Prostate Cancer Genome

I
1000 Genomes
Screen

Functional
annotation

a. Sensitive

Breaks TF motif? )|

(from Berger et al. '11)

Prostate
cancer

1829 somatic SNVs

Found in 1000 Genomes ?
Unlikely to
be driver

KN

4

~
In
ultra-sensitive region ?

b. Disruptive

Candidate drivers

v\,

f/\f

( Target gene known

) ( Target gene known ? )

W‘
|

(Target gene is|

b hub ?) (Target gene is a hub ?)

=<

N [ ]S

Gene under
strong selection ?

N Y

N/ \Y

| 1829 somatic SNVs |

v

( Found in 1000 Genomes ?)

Y Unlikely t

——» | 123 y 1o

N be driver
y

~

Annotated ?

In
Gltra-sensitive region D
[= ]

( Target gene known ? )
N Y

(Target gene is a hub ?)
N Y

N

[Khurana et al., Science (‘13)]
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| @ FunSeq2 - A flexible framework to prioritize regulatory mutations from cancer genome sequencing

Site integrates
|  Resus  Downloads Documentaton FAQ | user variants

Overview with large-scale

< Note: In addition to on-site calculation, we also provide

This tool is specialized to prioritize somatic variants from cancer scores for all possiblg noncoding SNVS of GRCh37/hg19 con t eXt
whole genome sequencing. It contains two components : 1) building under 'Downloads' (without annotation and recurrence

data context from various resources; 2) variants prioritization. We analysis).

provided downloadable scripts for users to customize the data Input File: (only for hg19 SNVs)

context (found under 'Downloads'). The variants prioritization step is

) ) | Choose File | No file chosen
downloadable, and also implemented as web server (Right Panel), —

with pre-processed data context. BED or VCF files as input. Sample input file FP= == = = = = = = — — = - = = L}
Output Format: 1 I
Instructions bed 4 1 1
< Input File - BED or VCF formatted. Click "green" button to add MAF: : :
multiple files. With multiple files, the tool will do recurrent analysis. 0 | Data Context |
(Note: for BED format, user can put variants from multiple genomes . ) ,
in one file, see Sample input fle .) l:/lu(rgr allele frequency threshold to filter polymorphisms from | |
(value 0~1) 1 I
< Recurrence DB - User can choose particular cancer type from the ) | |
database. The DB will continue be updated with newly available Cancer Type from Recurrence DB: Summary table Lo e e e e e o —— — a
WGS data. All Cancer Types s
< Gene List - Option to analyze variants associated with particular Add a gene list (Optional)

set of genes. Note: Please use Gene Symbols, one row per gene.

<+ Differential Gene Expression Analysis - Option to detect
differentially expressed genes in RNA-Seq data. Two files needed:

expression file & class label file. Please refer to Expression input files
for instructions to prepare those files.

Add differential gene expression analysis (Optional)

User Weighted scoring scheme
Variants

F un Se q .gersteinlab.org Highlighting variants

[Fu et al., GenomeBiology ('14)]




= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)
- entropy based method  p7tTommoomomooomooes
HOT region mmm

Polymorphisms

1
1
1
1
1
' Sensitive region N
:
1
1

Genome | A Y Y O [ N 1

[Fu et al., GenomeBiology ('14)]
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= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)
- entropy based method  p7tTommoomomooomooes
HOT region mmm

Polymorphisms

1
1
1
1
1
' Sensitive region N
:
1
1

[Fu et al., GenomeBiology ('14)]
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= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)
- entropy based method  p7tTommoomomooomooes
HOT region mmm

Polymorphisms

1
1
1
1
1
' Sensitive region N
:
1
1

Genome | T Y O [ N 1

P=%

Feature weight: Wg = 1 + pglog,pq + (1 — py)log,(1 —py)
p T w, l p = probability of the feature overlapping natural polymorphisms

For a variant: Score = E w, Oof observed features

[Fu et al., GenomeBiology ('14)]
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Germline pathogenic variants show

higher core scores than controls

Score

R VAR NI RYA

1.0

unmatched: 0.86

0.8

0.6

True Positive Rate
0.4

0.2
1

0.0

HGMD Matched region  Matched TSS Unmatched
regulatory (1,527) (4,258) (13,861) (144,086)

| | | | |
0.0 0.2 0.4 0.6 0.8

False Positive Rate

3 controls with natural polymorphisms (allele frequency >= 1% )
1. Matched region: 1kb around HGMD variants
2. Matched TSS: matched for distance to TSS

3. Unmatched: randomly selected

Ritchie et al., Nature Methods, 2014

[Fu et al., GenomeBiology ('14, in revision)]
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Info about content in this slide pack

 General PERMISSIONS

- This Presentation is copyright
Mark Gerstein, Yale University, 2016.

- Please read statement at

www.gersteinlab.org/misc/permissions.htmi .

- Feel free to use slides & images in the talk with PROPER acknowledgement
(via citation to relevant papers or link to gersteinlab.org). Paper references in
the talk are mostly from Papers.GersteinLab.org.

« PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and
clipped images in this presentation see streams.gerstein.info .
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