
1

Machine Learning,
Deep Learning

Roadmap
1. AI, Logic, Learning
2. Evaluating performance
3. Model dimensionality and overfitting

4. Artificial Neurons (Perceptrons)
5. Multilayer Neural Networks
6. Activation functions, error functions

7. Deep Learning: ImageNet
8. Dropout
9. DeepBind
10.Implementing Deep Learning: TensorFlow (Mateo Torres)

References

2

1. AI, Logic, Learning

• AI aims at building intelligent systems

• Logic-based AI focuses on reasoning

• Machine learning-based AI focuses on learning

3

Classification of machine learning techniques

• Supervised learning: for each input we have values for the
desired output, i.e. examples are pairs (x, t)
- classification problems: assign inputs to one of a number of discrete classes. The

goal is to learn a function that can discriminate new inputs into a number of classes.
- regression problems: the outputs represent the values of continuous functions.

The goal here is to learn a model of the continuous functions that can be used to predict
the output for new input points.

• Unsupervised learning: goal is to model the probability
distribution of the data, or discover structure (e.g. clusters)

• Semi-supervised learning: supervised learning which also makes
use of unsupervised data

• Reinforcement learning: we have a value for the desired output
only at the end of a sequence of actions.

4

2. Evaluating performance: What? How?

A. What do we want to evaluate?

GENERALIZATION

Therefore it is mandatory to divide your dataset:

Alternatively, use Cross Validation:

5

B. How do we evaluate performance?

1. Classification problems

2. Regression problems
Sum of squares error
Root Mean Square error

Accuracy
TP+TN/(TP+FP+FP+TN)

Sensitivity (or TPR)
TP/P = TP/(TP+FN)

Specificity
TN/N = TN/(TN+FP)

True positive rate
TP/(TP+FP)

False positive rate
FP/N = FP/(FP+TN)

ROC analysis is good for
comparing binary classifiers

6

3. Model dimensionality and overfitting

We are given the red dots.
We assume that they are noisy samples from a
signal/(function) – the blue curve – which we do not
have (we only have the red dots).
We want to predict new points, i.e. the y coordinates
for other values of x (e.g. x > 1)
Our model needs to approximate the blue function.
We decide to do it with polynomials.

Degree 1 polynomial Degree 2 polynomial Degree 3 polynomial Degree 10 polynomial

Which one is best? And why? 7

How does the GENERALIZATION performance vary, as we
increase the complexity of the polynomial?

• Occam's razor (William of Occam, ~1300): Accept the
simplest explanation that fits the data.

We should prefer simpler models to more complex models, and
this preference should be traded off against the extent to which the
model fits the data.

8

• IMPORTANT: increasing the number of features
may lead to a reduction in performance if the
number of datapoints is not increased. Why?

This is related to the “Curse of Dimensionality” Bellman, 1961. 9

Linear function, in d dimensions:

𝑦 𝒙 = 𝒘%	𝒙 + 𝑤)

Linear boundary for y(x) = 0, in 2
dimensional input space (x1, x2).

w defines the orientation of the plane
w0 defines the position of the plane
(it is often called bias)

We can define a new (d+1) dimensional vector 𝒘* = (𝑤),𝒘) and 𝒙* =
1, 𝒙 and rewrite the linear function as:

𝑦 𝒙 = 𝒘*%	𝒙*

NOTATION:
All vectors are columns
Bold indicates vectors
T indicates transpose

4. Artificial Neurons

10

We can add a non-linearity (activation function):

𝑦 𝒙 = 𝑔 𝒘%	𝒙 + 𝑤)

where g can be, for example:

𝑔 𝑧 = 	 1
12345

	 Sigmoid or logistic function, 𝜎(𝑎)

𝑔 𝑧 = 	 3
58345

352345
	 Hyperbolic tangent, tanh(a)

𝑔 𝑧 =

𝑔 𝑧 =	
11

z if z ≥ 0
0 otherwise

Step functions

Rectified Linear function

+1 when z ≥ 0
-1 (or 0) when z < 0 otherwise

z

z

12

Neuron

Training artificial neurons
How can we set the values of w in order to solve a
classification/regression problem?

Error function: a function that characterizes the difference
between the output of our system and the correct output.

13

𝐸 𝒘 = :(𝑦;−𝑡;)>
?

;@1

For example, the sum-of-squares
error function:

Tr
ai

ni
ng

 s
et

where N is the number of training
points, yn are the output values of the
system and and tn are the targets.

• If the activation function is differentiable (e.g.
sigmoid) we can calculate the derivatives of the
error function with respect to the weights.

• These derivatives can be used in gradient-based
optimization algorithms for finding the minimum of
the error function.

(Note that if y is a linear function of the weights, and the error function is
a quadratic function of the weights, the optimal weights can be found
exactly in closed form...)

14

Gradient Descent

1. Begin with an initial guess for w
2. Update the weight vector by moving a small distance in the

direction in which E decreases most rapidly, i.e. opposite of its
gradient: −𝛻𝒘𝐸. The update rule for the weights is:

where ε is the learning rate parameter.
3. Repeat step 2 until the difference in the error between 2 successive

iterations is smaller than a predefined threshold.

15

(images from Bishop, Neural Networks for Pattern Recognition, 1997)

Limitations

• Since the activation functions are monotonic, the
decision boundary generated by one artificial
neuron is linear.

16

* *

* from http://stats.stackexchange.com/questions/263768/can-a-perceptron-with-sigmoid-activation-function-perform-nonlinear-classificati

• Therefore it cannot solve
some simple problems

the Xor
problem

5. Multilayer Neural Networks
Let’s stack up many neurons. A multilayer Neural
Network can make the classes of data linearly separable!

17

Data are on the red and blue
lines. Note how a regular grid
in input space is transformed
by hidden units.

(from LeCun, Bengio, Hinton, Nature, 2015)

Important: non-linear activation functions are necessary – a multilayer network
of linear units is always equivalent to a one layer network with linear units.

Input layer

Hidden layer

Output layer

The Backpropagation algorithm
It calculates the derivatives of the error function with respect to the
network weights. These can be used to modify the weights in order to
minimize the error function.

18(from LeCun, Bengio, Hinton, Nature, 2015) Note that bias terms are omitted.

1. Forward pass

2. Backward pass

19

(from LeCun, Bengio, Hinton, Nature, 2015)

Important result
Neural networks having 2 layers of weights and a sigmoidal
activation unit can approximate arbitrarily well any
functional continuous mapping, provided the number of
hidden units is large enough
(this was proved by several authors towards the end of the ‘80s)

Nevertheless, NN with several hidden layers will turn
out to be very useful...

20

6. Error Functions, activation functions

• Minimizing a sum-of-square error, amounts to
maximizing the likelihood of the data under a
Gaussian noise assumption è very good for
Regression problems

• For Classification problems, the targets are binary
variables, and the Gaussian noise model is not ideal.
- The appropriate error function to use is the cross-entropy error

function
- For binary classification, the use of the sigmoid activation function

allows the outputs of the network to be interpreted as posterior
probabilities of class membership.

- For multiple exclusive classes, the corresponding activation function
is the softmax.

21

7. Deep Learning
• Representation learning: To discover from raw data the

representations needed for regression or classification.

• Deep learning methods have multiple levels of representation.
Each level is obtained by composing simple but non-linear
modules that each transform the representation at one level
into one at a higher, more abstract level.

• Typically, very large systems:
q hundreds of hundreds of thousands of artificial neurons
q millions of adjustable weights
q hundreds of millions of labelled examples with which to train the machine.

• Learning made possible by the advent of fast graphics
processing units (GPUs)

• Software libraries have been developed for the creation of
these systems (e.g. TensorFlow the Google Brain Team within
Google's Machine Intelligence)

22

Deep convolutional networks (ConvNets)

• Designed to extract features from the data
• Four key ideas:

1. local connections
2. shared weights
3. pooling
4. use of many layers

• Units in a convolutional layer are organized in feature maps.
• Feature maps: each unit is connected to local patches in the feature maps of the

previous layer through a set of weights. All units in a feature map share the
same weights. Different feature maps in a layer use different weights.

• Pooling units compute the maximum of a local patch of units in one (or in a
few) feature maps.

• IMPORTANT: ConvNets have fewer connections, hence they are easier to
train... (less overfitting)

23

Signal convolution (examples for images)

Images can be represented by matrices of numbers

24

The convolution operation between two matrices (signals)

(from https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/)

• Convolving an image with a numerical matrix we
obtain variations of the image:

25

original
image

(from https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/)

Example: two different filters (with red/green outline)
slides over the input image (convolution operation) to
produce two different feature maps.

26(from https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/)

• Classification problem: classify object in image -- 1000 different
classes.

• Best results ever: Halved the error rate of the best competitor.
• Training with 1 million high-resolution images; validation

50,000 images; testing 100,000 images
• NN with 60 million parameters and 650,000 neurons
• 5 convolutional layers, some followed by max-pooling layers
• 3 fully-connected layers with a final 1000-way softmax.
• Very efficient GPU implementation of the convolution

operation.
• Architecture inspired by LGN-V1-V2-V4-IT hierarchy in the visual

cortex.

27

ImageNet
[Krizhevsky, Sutskever, Hinton, NIPS, 2012]

- ReLU non-linear units
- 2 GPUs (top and bottom parts) that communicate only in certain layers
- Local response normalization (implements a form of lateral inhibition) –

1st and 2nd layer only
- Overlapping max pooling -- 1st, 2nd and 5th layer only
- Output layer: 1000 units, softmax activation, cross entropy error function
- Dropout to reduce overfitting (1st and 2nd fully connected layers). 28

(from Krizhevsky, Sutskever, Hinton, NIPS, 2012)

Feature extraction Classification

8. Dropout
Technique which sets to 0 the output of each hidden neuron with
probability 0.5. “Dropped out” neurons do not contribute to the
forward pass or backpropagation.

• It reduces complex co-adaptations of neurons è each
neuron is forced to learn more robust features

• It is equivalent to sampling a different architecture every
time an input is presented. But all these architectures
share weights

• We know that combining predictions of many different
models is very good at reducing test error (Netflix price
challenge)

29

9. DeepBind

Modeling of DNA sequence protein binding specificity.

1. Motif discovery: classify sequences that are bound by a
transcription factor from negative sequences that are
dinucleotide shuffles of the positively bound sequences.

2. Motif occupancy: discriminate genomic motif instances that are
bound by a transcription factor (positive set) from motif
instances that are not bound by the same transcription factor
(negative set) in the same cell type, where GC-content and motif
strength are matched between the positive and negative set.

30

[Alipanahi et al, Nat Biotech. 2015
Zeng et al, ISMB, 2016]

• 1st layer: convolutional layer, which can be thought of as a motif scanner.
• 2nd layer: global max-pooling layer. Its role is to call whether the motif modelled

by the respective convolutional layer exists in the input sequence or not.
• 3rd and 4th layer: fully connected
• Many variations were analysed later

31

(from Zeng et al, ISMB, 2016)

References
• Books

- Christopher M. Bishop, Pattern Recognition and Machine Learning, 2007
- Trevor Hastie, Rob Tibshirani, Jerome Friedman The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, Second Edition, 2009
- Ian Goodfellow, Yoshua Bengio, Aaron Courville Deep Learning, 2016

• Papers
- Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton ImageNet Classification

with Deep Convolutional Neural Networks, in Advances in Neural Information
Processing Systems 25 (NIPS 2012)

- LeCun, Y., Bengio, Y. and Hinton, G. E. (2015), Deep Learning
Nature, Vol. 521, pp 436-444

- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov,
R. (2014) Dropout: A simple way to prevent neural networks from overfitting The
Journal of Machine Learning Research, 15(1), pp 1929-1958.

- Babak Alipanahi, Andrew Delong, Matthew Weirauch, Brendan J Frey
Predicting the sequence specificities of DNA- and RNA-binding proteins by deep
learning, Nature Biotechnology 33, 831–838 (2015)

- Haoyang Zeng, Matthew Edwards, Ge Liu, David Gifford Convolutional
neural network architectures for predicting DNA–protein binding Bioinformatics
(2016) 32 (12): i121-i127. 32

