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Molecular pathology extends the diagnostic precision
gains of surgical pathology by probing even more
fundamental elements of biology
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Biological Causation

http://wrightstatephysicians.org/whatsnew/melanoma.html
http://pathology.osu.edu/residents/InternalGate/Area51/ResidentSlideCollection/images/
A100.jpg

https://rikengenesis.jp/ori/50279/etc_img/BRAFV600E.jpg

Diagnostic Precision

https://upload.wikimedia.org/wikipedia/commons/d/d2/Stethoscope-2.png
http://www.microscope.com/student-microscopes/university-student-
microscopes/omano-om139-infinity-corrected-plan-optics.html#gref
http://sequetech.com/
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In the future, all stages of clinical care will depend
on bioinformatics and genomics

* Prevention — molecular well-visits for early cancer
screening

 Risk-prediction — large genomic and transcriptomic
data-sets

« Diagnosis — identify the molecular subtype of a
patient’s condition

 Personalized treatments

- Targeted therapy — treat a patient’s underlying
molecular pathology

- Smarter experiential learning — treat patients based
on what worked for patients who were most
molecularly similar



Genomic technologies have begun to enter the
molecular pathology suite

 Precision Oncology * Neonatal screening for
Mendelian disease

Non-Small Cell Lung Carcinoma
= ==
large cell, non-small cell NOS
v

EGFR and ALK testing not
routinely performed

Perform EGFR and ALK testing

ALK mutation status EGFR mutation status

positive negative positive negative
A LY

» »
unlikely to respond to reflex to KRAS
ﬁhwﬂmapy ALK inhibitor therapy ‘ (gi!!!! !!!l"""'ﬂ y testing**
reflex to ROS1 testing / \

positive negative

7 N
positive negative / \
¥ LY
unlikely to respond to unlikely to respond to
itor therapy ALK inhibitor therapy anti-EGFR therapy anti-EGFR therapy

http://www.apmggroup.net/innovation/molecular_testing/Lung_Pathways/lung.html

http://www.ngsleaders.org/blogs.aspx



Key Drivers for Making Personal Genomic
Sequencing into a Useful Tool

 Falling costs of sequencing  Putting it together in
& computing Workflows
- How this exponential scaling will - Game of Genomes
change personal genomics * lllustrating the prioritization on
* One result of the falling costs: an identifiable individual
a huge & diverse DB - For variants, going from
— Particularly with large amounts of millions to tens
cancer genomics data - Using FunSeq to integrate
« Using the database to help evidence on noncoding
prioritize variants variants
- Rare & common variants » Suggesting a non-coding drivers

- Prioritizing rare coding variants
with molecular structures
Ex of STRESS
- Interpreting non-coding variants
with non-coding annotation
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Sequencing Data Explosion:
Faster than Moore’s Law for a Time

 DNA sequencing has
gone through
technological S-curves

- The advent of NGS was a
shift to a new technology
with dramatic decrease in
cost).

Cost per Raw Megabase of DNA Sequence

Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts
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Moore’s Law:
Exponential
Scaling of
Computer
Technology

« Exponential increase in the
number of transistors per
chip.

» Led to improvements in
speed and miniaturization.

« Drove widespread adoption
and novel applications of
computer technology.
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Kryder’s Law and
S-curves underlying
exponential growth

* Moore’s & Kryder’s

Laws

- As important as the
increase in computer speed
has been, the ability to
store large amounts of
information on computers is
even more crucial

« Exponential increase
seen in Kryder's law is
a superposition of
S-curves for different
technologies
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The changing costs of a sequencing pipeline

= = Sample collection and [ Sequencing Data reduction Downstream

Experimental experimental design W Data management analyses
s design
collection
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High-level summaries
(VCF, Peaks, RPKM)

Downstream analyses

(differential expression, 0%~
novel TARS, regulatory Pre-NGS Now Future
G ba) (Approximately 2000)  (Approximately 2010)  (Approximately 2020)

From ‘00 to ~’ 20,

cost of DNA sequencing expt. shifts from
the actual seq. to sample

collection & analysis

[Sboner et al. ( "11), Muir et al. (“15) Genome Biology]
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The changing costs of a sequencing pipeline

= = Sample collection and [ Sequencing Data reduction Downstream

Experimental experimental design W Data management analyses
s design
collection

l 100% _

-
TQ)

management

(Data reduction,
— v —

High-level summaries
(VCF, Peaks, RPKM)

—
M, MRF)
eaks, RPKI

Downstream analyses \
(differential expression, 0%~
novel TARS, regulatory Pre-NGS Now Future
G ba) (Approximately 2000)  (Approximately 2010) '\ (Approximately 2020)

From ‘00 to ~’ 20,
cost of DNA sequencing expt. shifts from
the actual seq. to sample
collection & analysis

B Labor

3 Instrument depreciation and maintenance
Il Reagents and supplies

3 Indirect costs

[Sboner et al. ( "11), Muir et al. (“15) Genome Biology]
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The changing costs of a sequencing pipeline

— :
Sample [SCENEE]
collection design

i B
i B

nagement

High-level summaries
Peaks, RPKM)

Downstream analyses

M: ds

| R, e

\ —
(VEF, s, RPKI

(differential expression,
novel TARSs, regulatory
networks, ...)

= Sample collection and
experimental design

100% _

0% ~

[ Sequencing

Data reduction Downstream
W Data management analyses

Pre-NGS Now
(Approximately 2000)  (Approximately 2010)

Future
(Approximately 2020)

From ‘00 to ~’ 20,

cost of DNA sequencing expt. shifts from
the actual seq. to sample
collection & analysis

[Sboner et al. ( "11), Muir et al. (“15) Genome Biology]

. O Index time

o Align time

o Dynamic programming
= |nitial indexing

m Next-gen indexing

Novoalign
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Published Year

Alignment algorithms scaling to keep
pace with data generation
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The changing costs of a sequencing pipeline

[SCENEE]
design

Sample
collection
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High-level summaries
(VCF, Peaks, RPKM)

i 1

Downstream analyses

(differential expression,
novel TARSs, regulatory
networks, ...)

= Sample collection and
experimental design

100% _

0% ~

[ Sequencing

Data reduction
W Data management

Downstream
analyses

Pre-NGS
(Approximately 2000)

Now
(Approximately 2010)

Future
(Approximately 2020)

From ‘00 to ~’ 20,

cost of DNA sequencing expt. shifts from
the actual seq. to sample
collection & analysis

[Sboner et al. ( "11), Muir et al. (“15) Genome Biology]
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Sequencing cost
reductions have
resulted in an
explosion of data

» The type of sequence
data deposited has
changed as well.

Protected data
represents an increasing
fraction of all submitted
sequences.

Data from techniques
utilizing NGS machines
has replaced that
generated via
microarray.
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Increasing diversity in
sequence data sources

16000 OP€ecies Sequenced by Year

Number of Bases
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Sequence Universe - - - -

. . SRA ~1 petabyte a

TCGA endpoint: ~2.5 Petabytes
~1.5 PB exome *

~1 PB whole genome

1000 Genomes " .f, *

- A Deep Catalog of Human GeneWar‘ﬁit;nj 7

(T ”Il
s WY

ARSI

NHGRI LSSP . . Star formation
. 100K Genomes England

. - L
Heidi Sofia, 7-16-15 , . Che : s, an NESS3)




Data Share

~— Open resources interface with API

Privacy Belt

Cutting-edge cryptographic
technology to ensure privacy
for results returned outside of
dbGaP authorization

Secure Resource
Must use internal tools

Requires user registration

Limited Partner Grant

Bring outside tools to data
Download results only
Requires dbGaP authorization

Trusted Partner Contract
Allows data download
Requires dbGaP authorization

Heidi Sofia 10/5/2016



PCAWG: PANCANCER ANALYSIS OF WHOLE
GENOMES

Donor Distribution by Primary Site

48 projects and 20 primary sites

300

200

Donors

100

0~

% 2,834 Donors [ 70,389 Files S 729.09 TB
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Breast Cancer

TCGA: What’'s ina ...
petabyte? -
7000 — 0@‘*0@0 il
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Placing the

individual into

the context of
the population
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(ﬁas!: interpretative
model
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Human Genetic Variation

Population of
2,504 peoples

A Cancer Genome A Typical Genome
[ [ |
1 )
Origin of Variants Class of Variants
3.5-4.3M
550 — 625K
2.1-25K
(20Mb)
Somatic | ~50 5K RN
4.1 -5M

Prevalence of Variants

Driver (~0.1%) Rare* (1-4%)

84.7M

3.6M
60K

88.3M

“Common

Rare (~75%)

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108
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Association of Variants with Diseases
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Where is Waldo?
(Finding the key mutations in ~3M Germline variants &

~5K Somatic Variants in a Tumor Sample)

Bi0'qeul9)sian sain}od o 9z
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Combined

workflows for

finding key
variants

Cases Controls

Cancer ‘

tissue

Normal S i i
tissue Y

Cells from
Q,.-; blOpS(
sample

Blood sample
(or other
surrogate

tissue for

{Sequencing and genotypin

to identify variants ¥

’)

ermline
NA status)

v

Common germline
(arrays, GWAS)

[ ]
—

Rare germline
(WGS)

(. ]
i

NN
i

v

Somatic (WGS)

(Statistical tests for enrichment )

v

Odds ratio
1

Y
Burden tests

v

Signals of positive
selection |

Computationally based functional
prioritization and interpretation

(

¢

2

g

E1

0
Position

Motif gain/loss

L

l&:&ﬂlﬁl’i

1 3 5 7 9111315

s Human
s Chimp
s MoOUSE

Evolutionary
conservation

b =

Network centrality
]

Experimental validation of
functional effects

(CRISPR-Cas9,
reporter assays etc.)

|

(Translation to the clinic)

Khurana, Ekta, et al. Nature Reviews Genetics (2016)
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Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

® 0 1000G & ExAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
5 HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)

o000 O O @e G 00) OO0 0O O ©®O @) OO® O ®awO OO O 0o @)
[
@ ol o [ X X ae ® O v a3 O o @& <o
o S ) ([ X ) &3
o ‘ L L] @ | ® o o o @ .
residue 150 residue 350

[Sethi et al. COSB ("15)]



Trends in data generation point to growing opportunities for leveraging
sequence variants to study structure (and vice versa)

The volume of sequenced exomes is outpacing that of structures, while
solved structures have become more complex in nature.

1e+05
|

8e+04
|
T
8

6e+04
|
|
6

4e+04
|
|
4

2e+04
I

|
2
(1eah yoes 10} 9,0} dol) gad Jad suieys # bay

Cumulative # of X-ray structures and # exomes

0e+00
l

1980 1990 2000 2010
Year

Exome data hosted on NCBI Sequence Read Archive (SRA) [Sethi et al. COSB ('15)]
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% Increase

005 010 015 020 0.25 0.30

0.00

Growing sequence redundancy in the PDB (as evidenced by a reduced pace of
novel fold discovery) offers a more comprehensive view of how such sequences
occupy conformational landscapes

I I I I I I I I I I I I
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Year
PDB: Berman HM, et al. NAR. (2000)

CATH: Sillitoe I, et al. NAR. (2015)
[Sethi et al. COSB ('15)] SCOP: Fox NK et al. NAR. (2014)
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Rare variant analysis
particularly
applicable at the
moment to Exomes

 CMG rare disease
variants & TCGA somatic
variants
- Main NIH disease
genomic project
— Both of these focus on

"rare” variant for which
GWAS is not meaningful

— Larger numbers of
individual exomes more
important than WGS

Home ¥ GSP CCDG GSPAC GSPCC  NHGRI

Centers for Mendelian Genomics

The Centers for Mendelian Genomics (CMG) use genome-
wide sequencing and other genomic approaches to
discover the genetic basis underlying as many Mendelian
traits as possible, and accelerate discoveries by
disseminating the obtained knowledge and effective
approaches, reaching out to individual investigators, and
coordinating with other rare disease programs worldwide.

The currently funded CMG are: the Baylor-Hopkins CMG,
the Broad Institute CMG, the University of Washington
CMG, and the Yale University CMG. Please direct inquiries
about collaborations directly to the centers.

The CMGs contribute to the overall field of Mendelian
genetics which has been responsible for many disease
gene discoveries. See the detailed Mendelian Traits by
PR VA "3 L

.y

Data Release and

Sharing

Mechanisms of Data Release
and Sharing

Latest Publications

« Reads meet rotamers:
structural biology in the age
of deep sequencing.

« Pathogenetics of alveolar
capillary dysplasia with
misalignment of pulmonary
veins.

« Recessive Inactivating
Mutations in TBCK

C ] oL ~—rp

« Exomes have the current

potential for great scale with
the better impact interpretability
of coding variants, often in a
region of known protein

structure

- Scale of EXAC, >60K exomes

[Lek et al. “16]
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Predicting Allosterically-Important Residues at the Surface

1. MC simulations generate a large number of candidate sites
2. Score each candidate site by the degree to which it perturbs large-scale motions
3. Prioritize & threshold the list to identify the set of high confidence-sites

pdb 1J3H

" o .
“ “ ‘¢ 0‘ “--..
* . R4 * * -
. \‘l \‘l * . e
) <

Lo (g

" Bt A Y
. . _ 2 Surface region with high
blndlng leverage o Z](ZZ Adi]'(m)) density of candidate sites
m= I
Surface region with low
density of candidate sites
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Predicting Allosterically-Important Residues at the Surface

PDB: 3PFK

Adapted from Clarke*, Sethi*, et al (in press)
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Unlike common SNVs, the statistical power with which we can
evaluate rare SNVs in case-control studies is severely limited

Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)

o000 O O @e G 00) OO0 0O O ©®O @) O O® O ®awOL OO O 00 @)
[
@ ol o [ X X ae ® O v a3 ® o @& <o
o S ) ([ X ) &3
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residue 150 residue 350

[Sethi et al. COSB ("15)]



Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

Rationalizing disease variants in the context of allosteric behavior
with allostery as an added annotation

® @ Predicted allosteric (surface | interior)
® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)

oCEmD @5 GBOGED GEENENGO “e o WO e o
000 O O@®® 00 000 O @O O O ©® O @O 00 O VO O
ap ' ' '
@ e o @e0e® @@ o o o oo o : 0. @ o
O ) oo @ @ee: & a»
® o0 o < o : @ e :o0: 0
residue 150 residue 350

[Sethi et al. COSB ("15)]
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Sequence features, incl. Conservation

Non-coding Annotations:

Overview

Functional Genomics

k4 }

» Removing artefacts
Identify large blocks of » Normalization
| repeated and deleted » Window smoothing
| sequence: *
» Within the human
reference genome Segmentation of processed
B the human data into active regions:
population » Binding sites
+ Between closely related ] Trarlscrlptlonally actis
mammalian genomes g 6.0NS

Large-scale sequence
similarity comparison

Signal processing of raw
experimental data:

v

v

v

dentify smaller-scale
repeated blocks using

statistical models

larger annotation blocks

Group active regions into

Chip-seq (Epigenome & seq. specific TF)
and ncRNA & un-annotated transcription

. L. 1N

\@J\/\/\/V\,

OEE = DEE

—

[Alexander et al., Nat. Rev. Genet. ('10)]
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ENCODE: Encyclopedia of DNA
Elements

Hypersensitive Sites e \»fff

—

4 .
VAN LN
SR oo oo d I WY § 4 v
AT L \ 1 Yo
. Tregten ¥s . . A ¢ 7
S8 L5 % CH,CO N
v B ) Q dﬁj A
& 990 K 2
o 2y
=17, /
v ,:"\",‘_\ mﬁ\
L e \)
A VN v

5C DNase-seq | |ChIP-seq | |WGBS Computational RNA-seq | | CLIP-seq
ChlA-PET | [FAIRE-seq RRBS predictions RIP-seq
Hi-C ATAC-seq methyl array
m;
Long-range regulatory elements Promoters
(enhancers, repressors/silencers, insulators) Transcrlpts
ENCODE
X Based on an image by Darryl Leja (NHGRI), lan Dunham (EBI), Michael Pazin (NHGRI)
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Summarizing the Signal:
"Traditional” ChipSeq Peak Calling

ChiP
e Generate & threshold the signal

profile to identify candidate
target regions
- Simulation (PeakSeq),

— Local window based Poisson (MACS), Threshold
- Fold change statistics (SPP) wp bl phsassanssdaflibasaasdan P

PotentiaITargets (N T L et () | T HHn el I 11
Normalized Control

e Score against the control

Significantly Enriched targets |1 |
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Different Active Enhancers in Different Epigenetic

Heart

) O |

B B S
JA 14 N

Liver

b

Human - — T}~ Ve~ N/ — (B o -
S 1GA TARBT ATTGRNTGA  NEVENGGCC RNV —
ST 1A TARAT ATTGRNTGA  SEANGGCC TR -

Connecting distal
regulatory elements
to target coding genes

—illl-

Target gene

Compile all
connections to

build regulatory ™

and enhancer—
promoter networks

Contexts (ie tissues);
Linking these enhancers to their target gene

Open chromatin
regions (DHS peaks),

histone modifications

or TF binding
(ChlIP-seq peaks)

Cross-species
sequence
alignments

B Brain-specific |
B Heart-specific
M Liver-specific
[ Ubiquitous
] Very low or

no signal

Regulatory
elements
identified:

From functional
genomics assays

From evolutionary
_ conservation only

Khurana, Ekta, et al. Nature Reviews Genetics (2016)
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Many
different
ways that
variants
can impact
non-coding
elements

~80% of
disease-
associated
GWAS
variants in
noncoding
regions
(Hindorff et al.
2009 PNAS)

A Loss or gain due to
mutations

TInpart C|
\
| Enhancer

Promoter
ncRNA locus

l Transcription
In partsD and E

Post-transcriptional
regulation
Ba Gain of motif @

Wild type —{CGGAEIG S -
Zi ~ A Promoter Gene CDS
21 (( A 1 mRNA
Y= NI/ 3 .
1 2 3 4 5 6

Position
Mutated

Bb Loss of motif

Wild type

Bits

13 5

Position Mutated TATETAT

Bc Altered binding effects in
hormonal cancers

1 3 5 7 9 111315

Position

Hormones

Mutated —@—Eﬁ-ﬂ—

[ Cis-regulatory region == ncRNA loci
. miRNAs
CDS within DNA loci miRNA
— and mRNAs binding sites
C Intrachromosomal Interchromosomal
(Proximal) (Distal)
~300 kb
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D CDSmRNA
w3l
5
Mutations in miRNA ™
binding sites ey T &0

Increased gene expression

CDS mRNA
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PGENE competes for miRNA binding

5

l PGENE deletion
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—
CDS mRNA degradation

Or
Ribosome
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Translational repression

Khurana, Ekta, et al. Nature Reviews Genetics (2016)
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PA AML MB CLL DLBC ~ BRCA  PRAD  PAAD LIHC STAD  LUAD
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Khurana, Ekta, et al. Nature Reviews Genetics (2016)
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Key Drivers for Making Personal Genomic
Sequencing into a Useful Tool

 Falling costs of sequencing  Putting it together in
& computing Workflows
- How this exponential scaling will - Game of Genomes
change personal genomics * lllustrating the prioritization on
* One result of the falling costs: an identifiable individual
a huge & diverse DB « For variants, going from
— Particularly with large amounts of millions to tens
cancer genomics data - Using FunSeq to integrate
« Using the database to help evidence on noncoding
prioritize variants variants
- Rare & common variants * Suggesting a non-coding drivers

— Prioritizing rare coding variants
with molecular structures
Ex of STRESS
- Interpreting non-coding variants
with non-coding annotation



CARLZIMMER'’S

GAMEOF (GENOM

3,559,137

| l
319,925

1,800

— N\

Illustration: Molly Ferguson for STAT; Animation: Dom Smith/STAT

Rare variants: MAF<0.05%

318,125

Loaling

1,018 733
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Overview & Coding Variants

= Common_Noncoding

CARLZIMMER'S

GAME OFGENOME§'

IIIusUarvon Molly Ferguson for STAT; Animation: Dom Smith/STAT

Common Coding Variants
10 242

SNVs of Individual Z

® Synonymous ® Nonsynonymous ® PrematureStop
318,125

RemovedStop = SpliceOverlap = NA

Rare Coding Variants
133

15

® Common_Coding = Rare_Coding Rare_Noncoding
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CARLZIMMER'’S

GAMEOF (GENOM

)

Illustration: Molly Ferguson for STAT; Animation: Dom Smith/STAT

Rare Non-synonymous Coding Variants

* 1018 SNVs -> 824 target genes

Gene Annotation

Cancer-related NOTCH2; PDE4DIP; TPR; CRTC3; CDH11; MLLTS6;
ASXL1; HMGA1; KDM6A

DNA repair RECQL; RAD51; PPM1D; XRCC1; AP1B1; FANCI; PTPRH;
RBBP7; SLX4; POLR2A; DCLRE1C; ANKLE1

Cancer & DNA repair ATM; PMS2; ERCC5

Actionable Gene ATM; KDMB6A; INSR; FOXP4

* ATM: Serine/Threonine Kinase; Regulator of p53 and BRCA1; leukemia; ataxia-telangiectasia; breast cancer
* PMS2: Direct p53 effectors; mismatch repair cancer syndrome; colorectal cancer; hereditary nonpolyposis
* ERCCS5: Chks in Checkpoint Regulation; DNA Repair; xeroderma pigmentosum

* KDMG6A: Transcriptional misregulation in cancer

* INSR: Insulin Receptor; PI3K-Akt signaling pathway; GPCR Pathway; Diabetes mellitus

* FOXP4: Transcriptional repressor that represses lung-specific expression
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Example of Molecular Effect
of Impactful Coding Variant

Arylamine N-acetyltransferase (PDB: 2PFR_A ; gene: NAT2)

114: |->T

(superimposed)

® o Predicted allosteric (surface | interior)
® Buried residues
® Protein-protein interaction site

® Post-translational modifications
HGMD (prem. stop | non-synon)
1000 Genomes (rare | common)

A @ Snyder (prem. stop | non-synon)
A @ nal12878 (prem. stop | non-synon)
A ® Subj. Z (prem. stop | non-synon)

0 50 100

I [

150 200
Residue ID

250 300
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CARLZIMMER'’S

GAMEOF GENOME

)

}llllslltv;ron: Molly Ferguson for STAT; Animation: Dom Smith/STAT

Annotation of Rare Noncoding Variants

Motif Gain
975
817 14
9
63,753 374 863
Target gene In sensitive
isa hub regions

9 variants -> 11 target genes

Gene Name Variant Location Function Annotation
RPL10 (Promoter&UTR) [cancer]
PDE4DIP (Distal&Intron) [cancer]
ZNF595 (Intron&Promoter)

GADDA45G (Promoter) [DNA_repair]
CCND2 (Distal) [actionable][cancer]
ACAP3 (Intron)

VANGL2 (Promoter)

SEC22B (Distal)

RNU1-9 (Distal)

PARP11 (Distal)

PUSL1 (Promoter)
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Basic Gene Annotation Set from GENCODE Version 19
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Transcription Factor ChIF-seq (161 factors) from ENCODE with Factork
[ | ] 3 11

. KLF12 motif Logo
Rare noncoding SNV

e Chr4:54475
e C=>T
e Target gene: Intron of ZNF595

Information content
o
U'| —
N
)
f

Position

Motif Gain: KLF12 (AP-2)
* Chr4:54469-54476 @

* Minus strand A P-value < 4e-8



Key Drivers for Making Personal Genomic
Sequencing into a Useful Tool

 Falling costs of sequencing  Putting it together in
& computing Workflows
- How this exponential scaling will - Game of Genomes
change personal genomics * lllustrating the prioritization on
* One result of the falling costs: an identifiable individual
a huge & diverse DB « For variants, going from
— Particularly with large amounts of millions to tens
cancer genomics data - Using FunSeq to integrate
« Using the database to help evidence on noncoding
prioritize variants variants
- Rare & common variants * Suggesting a non-coding drivers

— Prioritizing rare coding variants
with molecular structures
Ex of STRESS
- Interpreting non-coding variants
with non-coding annotation



Identification of non-coding candidate drivers amongst

somatic variants: Scheme

Cancer genome
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Candidate driver ® [Khurana et al., Science (‘13)]
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Flowchart for 1 Prostate Cancer Genome
(from Berger et al' '11) |1829 somatic SNVs |
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[Khurana et al., Science (*13)]

53 = Lectures.GersteinLab.org



Key Drivers for Making Personal Genomic
Sequencing into a Useful Tool

 Falling costs of sequencing  Putting it together in
& computing Workflows
- How this exponential scaling will - Game of Genomes
change personal genomics * lllustrating the prioritization on
* One result of the falling costs: an identifiable individual
a huge & diverse DB « For variants, going from
— Particularly with large amounts of millions to tens
cancer genomics data - Using FunSeq to integrate
« Using the database to help evidence on noncoding
prioritize variants variants
- Rare & common variants * Suggesting a non-coding drivers

— Prioritizing rare coding variants
with molecular structures
Ex of STRESS
- Interpreting non-coding variants
with non-coding annotation



Key Drivers for Making Personal Genomic
Sequencing into a Useful Tool

 Falling costs of sequencing  Putting it together in
& computing Workflows
- How this exponential scaling will - Game of Genomes
change personal genomics * lllustrating the prioritization on
* One result of the falling costs: an identifiable individual
a huge & diverse DB - For variants, going from
— Particularly with large amounts of millions to tens
cancer genomics data - Using FunSeq to integrate
« Using the database to help evidence on noncoding
prioritize variants variants
- Rare & common variants » Suggesting a non-coding drivers

- Prioritizing rare coding variants
with molecular structures
Ex of STRESS
- Interpreting non-coding variants
with non-coding annotation



HO

.gersteinlab.org.gersteinlab.org & Cancer Genomics - E Y Fu, .o > O

Z Liu, S Lou, J Bedford, XJ Mu, KY Yip, V Colonna, XJ Mu, ... , M
1000 Genomes Project Consortium

.molmovdb.org
D , A Sethi,
S Li, S Kumar,
R W.F. Chang,
J Chen I

*H,N

O

S NS Ifau’

D Wang,

DJ Spakowicz, L
Salichos, J Zhang, F
Isaacs, J Rozowsky

statnews.com/feature/ + .gersteinlab.org
C s o D Clarke, X Li, F Navarro

Y-KE-L-E



CARLZIMMER'S

GAME OFGENOMES

Raw Reads
(fastq)

exceRpt

Human
Aligned Reads CNVnator

(BAM) Somatator
RDV

Non-human

AlleleDB

Noncoding Coding

ALOFT,
STRESS

Funseq2,
AlleleDB

i Illustration: Molly Ferg;/son for STAT; Animation: Dom Smith/STAT
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Illustration: Molly Ferguson for STAT; Animation: Dom Smith/STAT

Overview

SNVs of Individual Z

SNVs of Individual S

| 318,125

< 20,370 307,991

1,800

1,618

= Common_Noncoding ® Common_Coding ® Rare_Coding * Rare_Noncoding

= Common_Noncoding = Common_Coding = Rare_Coding = Rare_Noncoding SNVs of Individual NA

Annotations for rare noncoding vairants <mn 368310
Subject Z SubjectS  Subject N v
Promoter 3,043 2,473 3,038
Enhancer 15,007 14,186 15,190 - Common Noncoding  Common.Coding = Rare_Coding - Fore_Noncoding
Other noncoding annotation*® 42,389 40,048 44,510

*TFP, DHS, ncRNA, pseudogene




Genomic technologies will find widespread clinical
adoption when their clinical utility justifies their
cost across disease domains

Now 10(?) Years

‘///\‘/’\
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Info about content in this slide pack

 General PERMISSIONS

- This Presentation is copyright Mark Gerstein,
Yale University, 2016.

- Please read permissions statement at

www.gersteinlab.org/misc/permissions.html .

- Feel free to use slides & images in the talk with PROPER acknowledgement
(via citation to relevant papers or link to gersteinlab.org).

- Paper references in the talk were mostly from Papers.GersteinLab.org.

« PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and

clipped images in this presentation see http://streams.gerstein.info .

- In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be
easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt
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