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Key Drivers for 
Making Personal 

Genomic  
Sequencing into a 

Useful Tool 

Mark Gerstein 
Yale 

 
Slides freely downloadable from  

Lectures.GersteinLab.org 
& “tweetable”  

(via @markgerstein). 
  

See last slide for more info. 
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Molecular pathology extends the diagnostic precision 
gains of surgical pathology by probing even more 

fundamental elements of biology 

http://wrightstatephysicians.org/whatsnew/melanoma.html 
http://pathology.osu.edu/residents/InternalGate/Area51/ResidentSlideCollection/images/
A100.jpg 
https://rikengenesis.jp/ori/50279/etc_img/BRAFV600E.jpg 
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https://upload.wikimedia.org/wikipedia/commons/d/d2/Stethoscope-2.png 
http://www.microscope.com/student-microscopes/university-student-
microscopes/omano-om139-infinity-corrected-plan-optics.html#gref 
http://sequetech.com/ 
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Next generation sequencing is an exciting addition 
to the molecular pathology suite 

Miniaturization and massive parallelization has sparked a genomics revolution  

Image credit: http://perception7.com/ 
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In the future, all stages of clinical care will depend 
on bioinformatics and genomics 

•  Prevention – molecular well-visits for early cancer 
screening 

•  Risk-prediction – large genomic and transcriptomic 
data-sets  

•  Diagnosis – identify the molecular subtype of a 
patient’s condition 

•  Personalized treatments  
- Targeted therapy – treat a patient’s underlying 

molecular pathology 
- Smarter experiential learning – treat patients based 

on what worked for patients who were most 
molecularly similar 
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Genomic technologies have begun to enter the 
molecular pathology suite 

•  Precision Oncology •  Neonatal screening for 
Mendelian disease 

http://www.ngsleaders.org/blogs.aspx 
http://www.apmggroup.net/innovation/molecular_testing/Lung_Pathways/lung.html 



Key Drivers for Making Personal Genomic  
Sequencing into a Useful Tool  

•  Falling costs of sequencing  
& computing 
-  How this exponential scaling will 

change personal genomics 

•  One result of the falling costs: 
a huge & diverse DB 
-  Particularly with large amounts of 

cancer genomics data 

•  Using the database to help 
prioritize variants 
-  Rare & common variants  
-  Prioritizing rare coding variants 

with molecular structures  
•  Ex of STRESS 

-  Interpreting non-coding variants 
with non-coding annotation 

•  Putting it together in 
Workflows 
- Game of Genomes 

•  Illustrating the prioritization on 
an identifiable individual 

•  For variants, going from 
millions to tens  

- Using FunSeq to integrate 
evidence on noncoding 
variants  

•  Suggesting a non-coding drivers 
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Sequencing Data Explosion:  
Faster than Moore’s Law for a Time 

•  DNA sequencing has 
gone through 
technological S-curves 
-  The advent of NGS was a 

shift to a new technology 
with dramatic decrease in 
cost).  
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•  Exponential increase in the 
number of transistors per 
chip. 

•  Led to improvements in 
speed and miniaturization. 

•  Drove widespread adoption 
and novel applications of 
computer technology. 

Moore’s Law: 
Exponential 
Scaling of 
Computer 

Technology 

[Waldrop	(‘15)	Nature]	
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•  Moore’s & Kryder’s 
Laws  
-  As important as the 

increase in computer speed 
has been, the ability to 
store large amounts of 
information on computers is 
even more crucial 

•  Exponential increase 
seen in Kryder’s law is 
a superposition of  
S-curves for different 
technologies 

 

Kryder’s Law and   
S-curves underlying 
exponential growth 

Inductive Writing/ MR reading

Inductive Writing/ GMR reading

Perpendicular Writing and GMR

Maturity

Development

Expansion

Maturity
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[Muir	et	al.	(‘15)	GenomeBiol.]	
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The changing costs of a sequencing pipeline 

From ‘00 to ~’20,  
cost of DNA sequencing expt. shifts from 
the actual seq. to sample  
collection & analysis 

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]	
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The changing costs of a sequencing pipeline 

From ‘00 to ~’20,  
cost of DNA sequencing expt. shifts from 
the actual seq. to sample  
collection & analysis 

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]	
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The changing costs of a sequencing pipeline 

From ‘00 to ~’20,  
cost of DNA sequencing expt. shifts from 
the actual seq. to sample  
collection & analysis 

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]	

Alignment algorithms scaling to keep 
pace with data generation 
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The changing costs of a sequencing pipeline 

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]	

From ‘00 to ~’20,  
cost of DNA sequencing expt. shifts from 
the actual seq. to sample  
collection & analysis 
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Sequencing cost 
reductions have 

resulted in an 
explosion of data 

•  The type of sequence 
data deposited has 
changed as well. 
-   Protected data 

represents an increasing 
fraction of all submitted 
sequences. 

-  Data from techniques 
utilizing NGS machines 
has replaced that 
generated via 
microarray. 

[Muir	et	al.	(‘15)	GenomeBiol.]	
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Increasing diversity in 
sequence data sources 

[Muir	et	al.	(‘15)	GenomeBiol.]	
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Sequence Universe 
TCGA	endpoint:	~2.5	Petabytes	
				~1.5	PB	exome	
				~1	PB	whole	genome	

SRA	~1	petabyte	

Star	forma)on	
100K	Genomes	England	ADSP	

29		
TB	

222 
TB 

68 
TB 

34 
T
B 

32 
T
B 

TCGA 
2.3 

Petabytes 
in CGHub 

NHLBI	ESP	
40 
TB 

NHGRI	LSSP	

ARRA	
AuBsm	

Clinical	

m
iR
N
A	

GTeX	

Heidi Sofia, 7-16-15 



Heidi	Sofia		10/5/2016	

Open	resources	interface	with	API	

Trusted	Partner	Contract	
Allows	data	download	
Requires	dbGaP	authorizaBon	

Limited	Partner	Grant	
Bring	outside	tools	to	data	
Download	results	only		
Requires	dbGaP	authorizaBon	

Privacy	Belt	
CuTng-edge	cryptographic	
technology	to	ensure	privacy	
for	results	returned	outside	of	
dbGaP	authorizaBon	

Secure	Resource	
Must	use	internal	tools	
Requires	user	registraBon	

Data	Share	
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PCAWG: PANCANCER ANALYSIS OF WHOLE 
GENOMES 
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>30	TCGA	Cancer	Types	
>73K	Experiments	
>11K	PaUents	

Breast	Cancer	

TCGA: What’s in a 
petabyte? 

hWps://cghub.ucsc.edu/	
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Placing the 
individual into 
the context of 
the population  
& 
using the 
population to 
build a 
interpretative 
model 
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Common

Rare* (1-4%)

SNP 3.5 – 4.3M

Indel 550 – 625K
SV 2.1 – 2.5K 

(20Mb)
Total 4.1 – 5M

SNP 84.7M

Indel 3.6M
SV 60K

Total 88.3M

Human Genetic Variation 
A Typical Genome

Population of 
2,504 peoples

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74  
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108

Common

Rare (~75%)

Class of Variants

Prevalence of Variants

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

A Cancer Genome

Coding Non-
coding

Germ-
line

22K 4.1 – 5M

Somatic ~50 5K

Origin of Variants

Driver (~0.1%)

Passenger



2
5
 - 

Le
ct

ur
es

.G
er

st
ei

nL
ab

.o
rg

 

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎧

⎨
⎪⎪

⎩
⎪
⎪

H
ea

lth
y

D
is

ea
se

d

Pooled
Variants

GWAS PositiveBurden Test

Association of Variants with Diseases 
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Rare or 
Somatic
Variants

High
Function
Impact
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Where	is	Waldo?	
(Finding	the	key	mutaUons	in	~3M	Germline	variants	&		

~5K	SomaUc	Variants	in	a	Tumor	Sample)	

26	
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Combined 
workflows for 

finding key 
variants 
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29	
[Sethi	et	al.	COSB	(’15)]		
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Year 

Exome data hosted on NCBI Sequence Read Archive (SRA) 

Trends in data generation point to growing opportunities for leveraging 
sequence variants to study structure (and vice versa) 

The volume of sequenced exomes is outpacing that of structures, while 
solved structures have become more complex in nature. 

[Sethi	et	al.	COSB	(’15)]		
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Growing sequence redundancy in the PDB (as evidenced by a reduced pace of 
novel fold discovery) offers a more comprehensive view of how such sequences 

occupy conformational landscapes 

Year 
PDB:     Berman HM, et al. NAR. (2000) 
CATH:  Sillitoe I, et al. NAR. (2015) 
SCOP:  Fox NK et al. NAR. (2014) [Sethi	et	al.	COSB	(’15)]		
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Rare variant analysis 
particularly 

applicable at the 
moment to Exomes  

•  CMG rare disease 
variants & TCGA somatic 
variants 
-  Main NIH disease 

genomic project 
-  Both of these focus on 

”rare” variant for which 
GWAS is not meaningful 

-  Larger numbers of 
individual exomes more 
important than WGS  

•  Exomes have the current 
potential for great scale with 
the better impact interpretability 
of coding variants, often in a 
region of known protein 
structure  
-  Scale of EXAC, >60K exomes 

[Lek et al. ‘16] 
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Surface	region	with	high		
density	of	candidate	sites	

Surface	region	with	low	
density	of	candidate	sites	

PredicUng	Allosterically-Important	Residues	at	the	Surface		

pdb	1J3H	

1.  MC	simulaBons	generate	a	large	number	of	candidate	sites	
2.  Score	each	candidate	site	by	the	degree	to	which	it	perturbs	large-scale	moBons	
3.  PrioriBze	&	threshold	the	list	to	idenBfy	the	set	of	high	confidence-sites	

! !

deformed as a result of the normal mode fluctuations (Figure 1A, top-right) receive a high score (termed 
the binding leverage for that site), whereas shallow sites with few interacting residues (Figure 1A, bottom-
left) or sites that undergo minimal change over the course of a mode fluctuation (Figure 1A, bottom-right) 
receive low binding leverage scores. Specifically, the binding leverage score for a given site is calculated as 
 

 
 
Here, the outer sum is taken over the 10 modes, and the pair of inner sums are taken over all pairs of 
residues (i,j) such that the line connecting the pair lies within 3.0 Angstroms of any atom within the 
simulated ligand. The value ∆dij(m) for each residue pair (i,j) represents the change in the distance between 
residues i and j when this distance is calculated using mode m. Thus, one may think of binding leverage as 
qualitatively predicting the extent to which a surface pocket is deformed when the protein undergoes 
conformational transitions. 
 
3.1-a-iii  Defining & Applying Thresholds to Select High-Confidence Surface-Critical Sites 

As discussed in the main text, without applying thresholds to the list of ranked surface sites that 
remain after running the binding leverage calculations, a very large number of sites would occupy the 
protein surface (Figure S2A). Thus, it is necessary to trim and process this list. To do so, we borrow from 
principles in energy gap theory (Bryngelson et al., 1995). Details regarding the calculations for establishing 
a threshold on the number of sites are given here. 

For each of the N candidate binding sites in what we call “pre-processed ranked list of sites” 
(produced by the procedure outlined above), we calculate the value ∂BL(j)/∆BL. Here, j is the jth site to 
appear in the pre-processed ranked list of sites, with this list of sites being ranked in descending order of 
each site’s binding leverage score (see above). ∂BL(j) is defined as the difference in the binding leverage 
scores of the jth site and the (j-1)th site in the ranked list. Because the list of sites is organized in descending 
order of binding leverage scores, ∂BL(j) ≥ 0. ∆BL is a constant defined as: 
 

∆BL  =  maxbinding_leverage_score  –  minbinding_leverage_score 
 
∆BL is thus the difference in the binding scores associated with the very top site and very bottom site in this 
ranked. Qualitatively, a large value for ∂BL(j)/∆BL indicates that there is a large drop in binding 
leverage scores in going from site j to site (j-1) within the pre-processed ranked list. 

We then consider those sites with the highest ∂BL/∆BL values – specifically, we consider the top 
5.5% of sites in terms of ∂BL/∆BL. Thus, we are considering site j if there is a very large gap in binding 
leverage scores between sites j and (j-1). The lowest-occurring site within this considered list of high 
∂BL/∆BL values demarcates a threshold beyond which we reject all lower sites within the pre-processed 
ranked list, leaving only what we call the “processed ranked list of sites”. 

We then go up from to bottom through the top of this processed ranked list of sites, and for each 
site, we determine the Jaccard similarity with all sites above. If the Jaccard similarity with any site above 
exceeds 0.7, then the lower site is removed from the processed ranked list. The final list obtained after 
performing these Jaccard similarity filters is taken to represent the set of surface-critical sites on a structure. 

In counting the final number of truly distinct surface-critical sites for any given structure, we 
remove redundant sites within the set of surface-critical sites obtained in the process above, as some of the 
sites within this set may still exhibit considerable mutual overlap. A site i within the list of surface-critical 
sites is said to be redundant if it is assigned a redundancy score that exceeds 0.4, where 

 
redundancy_score(i)  =  | {Rsite_i!}!!� {Rsites>i} |  /  Nres_i 

 
Here, {Rsite_i} is the set of residues in site i, {Rsites>i} is the union of residues in all accepted sites above site 
i in the list of sites, Nres_i is the number of residues in site i, and the |…| notation in the denominator of this 
ratio is meant to designate the number of residues in the indicated intersection. If this redundancy score is 
less than 0.4, then site i is considered to be truly distinct from all other sits, and it is included in the list of 
distinct sites. If the redundancy score exceeds 0.4, then the site overlaps with another site on the surface, 
and it is thus rejected from the set of accepted distinct sites. Finally, the total number of sites in the 
accepted set of sites is taken as the number of distinct sites for a structure. 

�� ij
 i     j

¨dbinding leverage  =  2

��������������ij(m)
 i     j

¨dbinding leverage  =  2

m=1
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Adapted	from	Clarke*,	Sethi*,	et	al	(in	press)	
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PredicUng	Allosterically-Important	Residues	at	the	Surface		

Adapted	from	Clarke*,	Sethi*,	et	al	(in	press)	

PDB:	3PFK	
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35	
[Sethi	et	al.	COSB	(’15)]		
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36	
Adapted	from	Clarke*,	Sethi*,	et	al	(in	press)	

36	
[Sethi	et	al.	COSB	(’15)]		
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Non-coding Annotations:  
Overview   

 
 
 
 
 
Sequence features, incl. Conservation 
 

Functional Genomics 
Chip-seq (Epigenome & seq. specific TF) 
and ncRNA & un-annotated transcription 
 

[Alexander	et	al.,	Nat.	Rev.	Genet.	(’10)]	
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ENCODE: Encyclopedia of DNA 
Elements 



4
0
 - 

Le
ct

ur
es

.G
er

st
ei

nL
ab

.o
rg

 

Summarizing	the	Signal:		
"TradiUonal"	ChipSeq	Peak	Calling	

•  Generate	&	threshold	the	signal	
profile	to	idenBfy	candidate	
target	regions	
-  SimulaBon	(PeakSeq),		
-  Local	window	based	Poisson	(MACS),		
-  Fold	change	staBsBcs	(SPP)	

Threshold	

•  Score	against	the	control	

PotenBal	Targets	

Significantly	Enriched	targets	

Normalized	Control	

ChIP	

[Rozowsky	et	al.	('09)	Nat	Biotech]		
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Different Active Enhancers in Different Epigenetic 
Contexts (ie tissues);  

Linking these enhancers to their target gene 
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Many 
different 

ways that 
variants 

can impact 
non-coding 
elements  Kh
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~80% of 
disease-

associated 
GWAS 

variants in 
noncoding 

regions  
(Hindorff et al. 
2009 PNAS)  
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Greatly 
varying 

number of 
variants in 
different 
types of 

cancers still 
impacts 
roughly 
same 

proportion of 
non-coding 

elements 



Key Drivers for Making Personal Genomic  
Sequencing into a Useful Tool  

•  Falling costs of sequencing  
& computing 
-  How this exponential scaling will 

change personal genomics 

•  One result of the falling costs: 
a huge & diverse DB 
-  Particularly with large amounts of 

cancer genomics data 

•  Using the database to help 
prioritize variants 
-  Rare & common variants  
-  Prioritizing rare coding variants 

with molecular structures  
•  Ex of STRESS 

-  Interpreting non-coding variants 
with non-coding annotation 

•  Putting it together in 
Workflows 
- Game of Genomes 

•  Illustrating the prioritization on 
an identifiable individual 

•  For variants, going from 
millions to tens  

- Using FunSeq to integrate 
evidence on noncoding 
variants  

•  Suggesting a non-coding drivers 
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Example of Molecular Effect  
of Impactful Coding Variant 
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Identification of non-coding candidate drivers amongst 
somatic variants: Scheme 

52	[Khurana et al., Science (‘13)] 
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Flowchart	for	1	Prostate	Cancer	Genome	
(from	Berger	et	al.	'11)	
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FunSeq.gersteinlab.org.gersteinlab.org & Cancer Genomics - E Khurana, Y Fu,  
Z Liu, S Lou, J Bedford, XJ Mu, KY Yip, V Colonna, XJ Mu, … , M Rubin,  
1000 Genomes Project Consortium 

STRESS.molmovdb.org  
D Clarke, A Sethi,  
S Li, S Kumar,  
R W.F. Chang,  
J Chen 

CostSeq2  
P Muir, S Li, S Lou,  

D Wang,  
DJ Spakowicz, L 

Salichos, J Zhang, F 
Isaacs, J Rozowsky 

statnews.com/feature/game-of-genomes + Zimmerome.gersteinlab.org 
C Zimmer, S Kumar, J Rozowsky, W Meyerson, D Clarke, X Li, F Navarro  
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Genomic technologies will find widespread clinical 
adoption when their clinical utility justifies their 

cost across disease domains 

    

$ 
$ 
$ 

+ 

Now 10(?) Years 
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Extra 
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Info about content in this slide pack 
•  General PERMISSIONS 
- This Presentation is copyright Mark Gerstein,  

Yale University, 2016.  
- Please read permissions statement at  

www.gersteinlab.org/misc/permissions.html . 
-  Feel free to use slides & images in the talk with PROPER acknowledgement  

(via citation to relevant papers or link to gersteinlab.org).  
-  Paper references in the talk were mostly from Papers.GersteinLab.org.  

 
•  PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and 

clipped images in this presentation see http://streams.gerstein.info .  
-  In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can be 

easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt  
 


