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Moore’s Law:
Exponential
Scaling of
Computer
Technology

- Moore’s & Kryder’s

Laws

- As important as the increase
in computer speed has
been, the ability to store
large amounts of information
on computers is even more
crucial

« Exponential increase
seen in Moore’s law is
a superposition of s-
curves for different
technologies
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Sequencing Data Explosion:
Faster than Moore’s Law for a Time (or a S-curve)

Cost per Raw Megabase of DNA Sequence

Moore's Law

m National Human Genome
Research Institute
$0.1 R S

genome.gov/sequencingcosts
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Sequencing cost
reductions have
resulted in an
explosion of data

» The type of sequence
data deposited has
changed as well.

- Protected data
represents an increasing
fraction of all submitted
sequences.

- Data from techniques
utilizing NGS machines has
replaced that generated via
microarray.
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" [from Heidi Sofia, NHGRI, ‘14]
SRA >1 petabyte

Seq Univers:é'-
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Species Sequenced by Year
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The changing costs of a sequencing pipeline

m Sample collection and @ Sequencing Data reduction Downstream

Experimental experimental design W Data management analyses
sEmgs design
collection

§ 1

100% _

,,

Mapped reads
_(BAM, CRAM, RF)

— '
High-level summaries
(VCF, Peaks, RPKM)

Downstream analyses

management

(differential expression, 0% =
novel m;kr:gulam Pre-NGS Now Future
n besd) (Approximately 2000) ~ (Approximately 2010)  (Approximately 2020)

From ‘00 to ~’ 20,
cost of DNA sequencing expt. shifts from

the actual seq. to sample
collection & analysis

B Labor

3 Instrument depreciation and maintenance
[ Administration costs

[ Basic data processing and initial storage

[Sboner et al. ( "11), Muir et al. (“15) Genome Biology]
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= Next-gen indexing
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FASTA

Novoalign
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Published Year

Alignment algorithms scaling to keep
pace with data generation
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The changing costs of a sequencing pipeline

NwW

m Sample collection and Data reduction Downstream

[ Sequencing

Experimental experimental design W Data management analyses
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cost of DNA sequencing expt. shifts from
the actual seq. to sample
collection & analysis

B Labor

3 Instrument depreciation and maintenance
[ Administration costs

[ Basic data processing and initial storage

[Sboner et al. ( "11), Muir et al. (“15) Genome Biology]
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Alignment algorithms scaling to keep
pace with data generation
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Personal Genomics:
Handling Exponential Data Scaling
through Prioritizing High-impact Variants

* Introduction

- The exponential scaling of
data generation & data

processing
- The landscape of variants in
personal genomes
« Characterizing Rare
Variants in Coding Regions
- ldentifying with STRESS
cryptic allosteric sites

— On surface & in interior
bottlenecks

* Non-coding Variants :
Prioritizing using AlleleDB
in terms of
allelic elements

- Having observed difference in
molecular activity in many
contexts

* Putting it together in
workflows:

Integrating evidence on non-
coding variants with FunSeq

- Systematically weighting all
the features

— suggesting non-coding drivers

— Prioritzing rare germline
variants
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Personal Genomics
as a Gateway into Biology

Personal genomes soon will become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Personal Genomics
as a Gateway into Biology

Personal genomes soon will become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Human Genetic Variation

Population of
2,504 peoples

A Cancer Genome A Typical Genome
[ [ |
1 )
Origin of Variants Class of Variants
3.5-4.3M
550 — 625K
2.1 - 25K
(20Mb)
Somatic | ~50 5K RN
4.1 -5M

Prevalence of Variants

Driver (~0.1%) Rare* (1-4%)

84.7M

3.6M
60K

88.3M

“Common

Rare (~75%)

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108
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CAN YOU FIND THE PANDA’?

Finding Key
Variants

Germline

Common variants
« Can be associated with phenotype (ie disease) via a Genome-wide Association Study

(GWAS), which tests whether the frequency of alleles differs between cases & controls.

» Usually their functional effect is weaker.
* Many are non-coding
» Issue of LD in identifying the actual causal variant.

Rare variants
» Associations are usually underpowered due to low frequencies.
« They often have larger functional impact
« Can be collapsed in the same element to gain statistical power (burden tests).
* In some cases, causal variants can be identified through tracing inheritance of
Mendelian subtypes of diseases in large families.

McCarthy, M. et al. Nat. Rev. Genet. 2008. 9, 356-369, Zuk, O. et al. PNSA. 2014. Vol. 11, no. 4, MacArthur DG et al. Nature 2014. 508:469-476
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CAN YOU FIND THE PANDA’?

g7,y e .

Finding Key
Variants

Somatic

* Overall
« Often these can be conceptualized as very rare variants
* A challenge to identify somatic mutations contributing to cancer is to find driver
mutations & distinguish them from passengers.

* Drivers
» Driver mutation is a mutation that directly or indirectly confers a selective growth

advantage to the cell in which it occurs.
A typical tumor contains 2-8 drivers; the remaining mutations are passengers.

 Passengers

« Conceptually, a passenger mutation has no direct or indirect effect on the
selective growth advantage of the cell in which it occurred.
Vogelstein B. Science 2013. 339(6127):1546-1558
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Association of Variants with Diseases
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Personal Genomics:
Handling Exponential Data Scaling
through Prioritizing High-impact Variants

* Introduction

- The exponential scaling of
data generation & data

processing
- The landscape of variants in
personal genomes
« Characterizing Rare
Variants in Coding Regions
- ldentifying with STRESS
cryptic allosteric sites

— On surface & in interior
bottlenecks

 Non-coding Variants :
Prioritizing using AlleleDB
in terms of
allelic elements

- Having observed difference in
molecular activity in many
contexts

* Putting it together in
workflows:

Integrating evidence on non-
coding variants with FunSeq

- Systematically weighting all
the features

— suggesting non-coding drivers

— Prioritzing rare germline
variants
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Unlike common SNVs, the statistical power with which we can
evaluate rare SNVs in case-control studies is severely limited

Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)
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residue 150 residue 350

[Sethi et al. COSB ("15)]



Models of Protein Conformational Change

Motion Vectors from Normal Modes (ANMs)

g5l

VAR

el
— A
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4
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PDBID: 3REU : Characterizing uncharacterized variants

Adapted from Fuglebakk et al, 2014 <= Finding Allosteric sites
<= Modeling motion
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Predicting Allosterically-Important Residues at the Surface

1. MC simulations generate a large number of candidate sites
2. Score each candidate site by the degree to which it perturbs large-scale motions
3. Prioritize & threshold the list to identify the set of high confidence-sites

pdb 1J3H

" o .
“ “ ‘¢ 0‘ “--..
* . R4 * * -
. \‘l \‘l * . e
) <

Lo (g

" Bt A Y
. . _ 2 Surface region with high
blndlng leverage o Z](ZZ Adi]'(m)) density of candidate sites
m= I
Surface region with low
density of candidate sites
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Predicting Allosterically-Important Residues at the Surface

PDB: 3PFK

Adapted from Clarke*, Sethi*, et al (in press)
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Predicting Allosterically-Important Residues within the Interior

weight edges using
motion vectors

AYA /3 \7, @ —
identify

critical residues

Adapted from Clarke*, Sethi*, et al (in press)
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Predicting Allosterically-Important Residues within the Interior

weight edges using .
% g g gii ovect;::;i;::‘ COVZ] — (rl ® I‘J)
Sy LT ¢y = Covy 1N
Dj; = —log(1Cyl)

Adapted from Clarke*, Sethi*, et al (in press)
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Predicting Allosterically-Important Residues within the Interior

:r'

_a.»
e &

4
¥

NS
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PDB: IXTT

Adapted from Clarke*, Sethi*, et al (in press)
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STRESS Server Architecture: Highlights

stress.molmovdb.org

Thin front end

EC2

o |

[ |

Home Documen tation Examples

Submit a new job:

Enter PDB ID (ex: 3D3D): Or upload PDB File:

oose File | No file chosen

Select which modules to run:

o Surface-critical

# Interior-critical

STRESS A computationally-efficient framework for identifying potential allosteric residues a

in surface and within the interior

Retrieve job results:

Job id: Retrieve

EC2

EC2

=<

Auto-scalable
back-end

EC2

X
=

RESTful
storage

* Alight front-end server handles incoming requests, and powerful back-end
servers perform calculations.

e Auto Scaling adjusts the number of back-end servers as needed.

* Atypical structure takes ~30 minutes on a E5-2660 v3 (2.60GHz) core.

* Input & output (i.e., predicted allosteric residues) are stored in S3 buckets.

Adapted from Clarke*, Sethi*, et al (in press)
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[Clarke et al. (‘“16) Structure]

Predicting Allosteric Sites at the Surface: Predicted &

PFK (100)

ADK (100)

G6P deamin.

(50)

Trp Synth.
(25)

Glu dehyd.
(25)

Thr Synth.
(67)

Malic enz. (0)

Tyr P-ase
(100)

Arg. Kin. (0)

UPRTase
(100)

ATCase
(25)

PKA
(100)
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Intra-species conservation of predicted allosteric residues

1000 Genomes

X

X

X

jj@@@m
Surface Interior
o o |
Q ()
& g o
Vv g QL §
9 &7 o Q2 °
< < g B
Neo) T 2 |
v 8 _ L. o o
2 2 I non-critical Z
() ] o
- (= o

P
& L I 2 L |
p=0.309 p=1.80e-05

Adapted from Clarke*, Sethi*, et al (in press)
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Intra-species conservation of predicted allosteric residues

Surface
O
| o
ﬂp O
g s 8
s
() 8
S 14 o 8
— N O
< 6 8
g 8 —
> 4 :
| |
p=1.49e-3

Adapted from Clarke*, Sethi*, et al (in press)

ExAC

I non-critical

Interior
E_ 8
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Q
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g :
| |
p=7.98e-09
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Unlike common SNVs, the statistical power with which we can
evaluate rare SNVs in case-control studies is severely limited

Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)
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residue 150 residue 350

[Sethi et al. COSB ("15)]



Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

Rationalizing disease variants in the context of allosteric behavior
with allostery as an added annotation

® @ Predicted allosteric (surface | interior)
® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)
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residue 150 residue 350

[Sethi et al. COSB ("15)]



Personal Genomics:
Handling Exponential Data Scaling
through Prioritizing High-impact Variants

* Introduction

- The exponential scaling of
data generation & data

processing
- The landscape of variants in
personal genomes
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- ldentifying with STRESS
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the features

— suggesting non-coding drivers

— Prioritzing rare germline
variants
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Allele-specific binding and expression

Paternal | |
DNA Genomic variants
gene . : .
affecting allele-specific behavior

e.g. allele-specific binding

transcription factor (ASB)
N/—\(DNA-binding protein)
Maternal
DNA o

\/\/P\AAA
AA
— A \ e.g. allele-specific expression
Paternal r — M (ASE)
DNA C gene

Maternal

%,
DNA * gene
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Inferring Allele Specific Binding/Expression
using Sequence Reads

RNA/ChIP-Seq Reads

ACTTTGATAGCGTCAATG X
CTTTGATAGCGTCAATGC
CTTTGATAGCGTCAACGC ~AACGC...
TTGACAGCGTCAATGCAC TF
TGATAGCGTCAATGCACG
ATAGCGTCAATGCACGTC )
TAGCGTCAATGCACGTCG J
CGTCAACGCACGTCGGGA
GTCAATGCACGTCGAGAG L AATGC...
CAATGCACGTCGGGAGTT
AATGCACGTCGGGAGTTG
TGCACGTTGGGAGTTGGC Haplotypes with a
Heterozygous Polymorphism
10 x T
2 x C

Interplay of the annotation and individual sequence variants



AlleleDB: Building 382 personal genomes to detect
allele-specific variants on a large-scale

1.  Build personal genomes X

X 382
2. Align ChIP-seq & RNA-seq reads

3. Detect allele-specific variants
via a series of filters and tests

Many Technical Issues:
Reference bias, Ambiguous
mapping bias, Over-dispersed
(non binomial null)

alleledb.gersteinlab.org

-

Variants
(1000 Genomes
Project)

N—
Y
N—
RNA-seq:
(QEUVADIS)
ChIP-seq:
(ENCODE)

aIIeIe-specifiE SNV

Chen J. et al. (Nature Commun, in press)
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AlleleDB: Annotating rare & common allele-specific
variants over a population

) { hgtd

| L]
wr I,,f
54, 048, 0a0| 54,860, 004 54,088, bag| 54,060, 008 54, 068, 004 54,070, 084| 54,075, 04| 54,060, 004 ] I n te a Ce S W I t h
TN

el | UCSC genome
output browser
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rack 1822 = — = ZNF331 gene
Position structure
alleledb.gersteinlab.org Chen J. et al. (Nature Commun, in press)

1
I~
™M



AlleleDB: Annotating rare & common allele-specific
variants over a population

18 Ko} { hetd
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Collecting ASE/ASB variants
into allele-specific genomic regions

Does a particular genomic element have a higher tendency to be allele-specific?
Fisher’s exact test, for the enrichment of allele-specific variants in the element (with
respect to non-allele-specific variants that could potentially be called as allelic)

+
—(—
=
—+—

+ allele-specific % %

.r .
+ non-allele-specific \ } .
\ \ \ \ !
N \ \ \ \ \
. \ \ \ \ \
. ‘\ \ \ \ '
\ \ \ \
‘\ \ \ \ \ N
1 [ !
1 1 /I ! /I II
1 1 ’ ! ’ ’
1 1 ] ! ] l
1 1 I ! 1 I
1 1 / ! ! /
1 1 ! I /

—> —

alleledb.gersteinlab.org Chen J. et al. (Nature Commun, in press)



Groups of elements that are enriched or
depleted in allelic activity

Enrichment ASB m
A ASE m
1 - Enhancer
f| F o |
O F | ceem e mccmmmemmm————— N _ e maaa
2 | Promoter |
; . wites) [ !
.E : SA1 *kk 1
0
E’ | POL2 1
| RPB2 1
1 |
1 |
1 |

CTCF

PUA1
...............................................
m-‘ I Intron

e H s |
6 -04 -0.2 0.0

0.0 0.2 0.4 0.6
log odds ratio (w.r.t. expected)

-0

Chen J. et al. (Nature Commun, in press)
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Identification of non-coding candidate drivers amongst

somatic variants: Scheme

Cancer genome
variants T T T
| | |
| | |
1000
ce— A R SRS, 30 - i
G:;zem:s ﬂ'( \.( \o( % Q) 1000 Genomes variants

’ 4 ? n ® SNV W Indel
[ | ]

[ | ]

[ | ]

I

[

[

[

[

[

[
[
[
[
[

Non-coding annotation

TR GED S ) o D = GEED S

T
[
[
[
[ Degree of negative selection

[ [ I T
[ l l
[ | l [
[ \ [
| | | l [
Sensitive - =) H o} -—-
Sensitive
|
|

Occurrence in multiple samples

,
[I .-
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Flowchart for 1 Prostate Cancer Genome
(from Berger et al' '11) |1829 somatic SNVs |
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| @ FunSeq2 - A flexible framework to prioritize regulatory mutations from cancer genome sequencing

Site integrates
| Resuts  Downloads  Documentation FAQ | user variants

e with large-scale

< Note: In addition to on-site calculation, we also provide

This tool is specialized to prioritize somatic variants from cancer scores for all possiblg noncoding SNVS of GRCh37/hg19 con t eXt
whole genome sequencing. It contains two components : 1) building under 'Downloads' (without annotation and recurrence

data context from various resources; 2) variants prioritization. We analysis).

provided downloadable scripts for users to customize the data Input File: (only for hg19 SNVs)

context (found under 'Downloads'). The variants prioritization step is

) ) | Choose File | No file chosen
downloadable, and also implemented as web server (Right Panel), —

with pre-processed data context. BED or VCF files as input. Sample input file FP= == = = = = = = — — = - = = L}
Output Format: 1 I
Instructions bed 4 1 1
< Input File - BED or VCF formatted. Click "green" button to add MAF: : :
multiple files. With multiple files, the tool will do recurrent analysis. 0 | Data Context |
(Note: for BED format, user can put variants from multiple genomes . ) ,
in one file, see Sample input file .) l:/lu(rgr allele frequency threshold to filter polymorphisms from | !
(value 0~1) 1 I
< Recurrence DB - User can choose particular cancer type from the ) | |
database. The DB will continue be updated with newly available Cancer Type from Recurrence DB: Summary table Lo e e e e e o —— — a
WGS data. All Cancer Types s
< Gene List - Option to analyze variants associated with particular Add a gene list (Optional)

set of genes. Note: Please use Gene Symbols, one row per gene.

<+ Differential Gene Expression Analysis - Option to detect
differentially expressed genes in RNA-Seq data. Two files needed:

expression file & class label file. Please refer to Expression input files
for instructions to prepare those files.

Add differential gene expression analysis (Optional)

User Weighted scoring scheme
Variants

F un Se q .gersteinlab.org Highlighting variants

[Fu et al., GenomeBiology ('14)]




= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)

- entropy based method
HOT region

+ Sensitive region

i Polymorphisms

_____________________________

Genome SN W O A I Y I N |

[Fu et al., GenomeBiology ('14)]
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= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)

- entropy based method
HOT region

+ Sensitive region

i Polymorphisms

_____________________________

[Fu et al., GenomeBiology ('14)]
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= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)

- entropy based method
HOT region

+ Sensitive region

i Polymorphisms

_____________________________

Genome | N N T s | I [ W

P
Feature weight: Wq = 1 + Pad logzpd + (1 — pd)logz(l — pd)
1% T W, l p = probability of the feature overlapping natural polymorphisms

For a variant: Score = E w, Oof observed features

[Fu et al., GenomeBiology ('14)]
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Germline pathogenic variants show
higher core scores than controls

Score

o ]
m p— Al
unmatched: 0.86
0 7
< o
2
@©
X o _
o G.) o
=
‘©
o < |
N — Ao o
()
2
o«
o - L ! | 2 4
| | | | | |
HGMD Matched region  Matched TSS Unmatched 0.0 0.2 0.4 06 0.8 10

regulatory (1,527) (4,258) (13,861) (144,086)
False Positive Rate

3 controls with natural polymorphisms (allele frequency >= 1% )
1. Matched region: 1kb around HGMD variants

2.Matched TSS: matched for distance to TSS

3.Unmatched: randomly selected

Ritchie et al., Nature Methods, 2014 _ _ o
[Fu et al., GenomeBiology ('14, in revision)]

48 =



Personal Genomics:
Handling Exponential Data Scaling
through Prioritizing High-impact Variants

* Introduction

- The exponential scaling of
data generation & data

processing
- The landscape of variants in
personal genomes
« Characterizing Rare
Variants in Coding Regions
- ldentifying with STRESS
cryptic allosteric sites

— On surface & in interior
bottlenecks

 Non-coding Variants :
Prioritizing using AlleleDB
in terms of
allelic elements

- Having observed difference in
molecular activity in many
contexts

* Putting it together in
workflows:

Integrating evidence on non-
coding variants with FunSeq

- Systematically weighting all
the features

— suggesting non-coding drivers

— Prioritzing rare germline
variants
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Personal Genomics:
Handling Exponential Data Scaling
through Prioritizing High-impact Variants

* Introduction

- The exponential scaling of
data generation & data

processing
- The landscape of variants in
personal genomes
« Characterizing Rare
Variants in Coding Regions
- ldentifying with STRESS
cryptic allosteric sites

— On surface & in interior
bottlenecks

* Non-coding Variants :
Prioritizing using AlleleDB
in terms of

allelic elements
- Having observed difference in
molecular activity in many
contexts

* Putting it together in
workflows:

Integrating evidence on non-
coding variants with FunSeq

- Systematically weighting all
the features

— suggesting non-coding drivers

— Prioritzing rare germline
variants
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Info about content in this slide pack

 General PERMISSIONS

- This Presentation is copyright Mark Gerstein,
Yale University, 2015.

- Please read permissions statement at

www.gersteinlab.org/misc/permissions.html .

- Feel free to use slides & images in the talk with PROPER acknowledgement
(via citation to relevant papers or link to gersteinlab.org).

- Paper references in the talk were mostly from Papers.GersteinLab.org.

« PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and

clipped images in this presentation see http://streams.gerstein.info .

- In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be
easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt
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