

Harnessing
the
"Data
Exhaust"
from
large-scale
efforts

Doing better science:
Finding new protein
relationships (e.g.
protein interactions),
looking for inconsistencies in arguments,
assembling consensus definitions
automatically

Krauthammer et al.

Molecular triangulation: bridging linkage and molecular-network information for identifying candidate genes in Alzheimer's disease. PNAS ('04); lossifov et al. Probabilistic inference of molecular networks from noisy data sources.

Bioinformatics ('04)

Making it understand-able (through "mashup")

SciVee, podcasts

Mapping
Science
+
Studying its
Dynamics &
Evolution

- Revealing patterns of collaboration
- Understanding basis of terms & nomenclature
- Tracking the evolution of ideas
- Models for the evolution of science;
- Helping set policy
 research
 directions

- Intro: Using the Data Exhaust from Consortia
- PubNet Tool for analyzing co-publication patterns
 - Different patterns for Str.
 Genomics centers
- Analysis of Evolution of the ENCODE Consortium
 - Differences in "modularity" for members & users
 - Key role for brokers

- Other Examples of Idea & Data Diffusion
 - RNAi & SRA bases
- Quant. Model of Information Diffusion
 - Based on PLOS ALM
 - Random multiplicative process
 - Moderated by parm.w/ 2 time regimes

- Intro: Using the Data Exhaust from Consortia
- PubNet Tool for analyzing co-publication patterns
 - Different patterns for Str.
 Genomics centers
- Analysis of Evolution of the ENCODE Consortium
 - Differences in "modularity" for members & users
 - Key role for brokers

- Other Examples of Idea & Data Diffusion
 - RNAi & SRA bases
- Quant. Model of Information Diffusion
 - Based on PLOS ALM
 - Random multiplicative process
 - Moderated by parm.w/ 2 time regimes

Increase in Consortium Science

Using Network Representations to Make Maps of Science -- Studying the Publication Patterns of Genomics Consortia

Different Representations of the Publication Network of a Structural Genomics Center (NESG)

Co-authorship Networks comparing the 9 NIH Structural Genomics Centers

Average Degree

[Douglas et al. GenomeBiol. ('05), pubnet.gersteinlab.org]

- Intro: Using the Data Exhaust from Consortia
- PubNet Tool for analyzing co-publication patterns
 - Different patterns for Str.
 Genomics centers
- Analysis of Evolution of the ENCODE Consortium
 - Differences in "modularity" for members & users
 - Key role for brokers

- Other Examples of Idea & Data Diffusion
 - RNAi & SRA bases
- Quant. Model of Information Diffusion
 - Based on PLOS ALM
 - Random multiplicative process
 - Moderated by parm.w/ 2 time regimes

■ non-ENCODE (papers used ENCODE data)
■ ENCODE

With help of NHGRI, identified:

1,786 ENCODE members & 8,263 non-members from 558 consortium papers supported by ENCODE funding & 702 community papers that used ENCODE data but were not supported by ENCODE funding

Network statistics highlight change in modularity with consortium rollouts (L) & importance of broker role (R)

non-member broker

v ENCODE

Similar Findings in terms of modularity & broker scientists in the modENCODE consortium as for ENCODE

Lectures.GersteinLab.org

- Intro: Using the Data
 Exhaust from Consortia
- PubNet Tool for analyzing co-publication patterns
 - Different patterns for Str.
 Genomics centers
- Analysis of Evolution of the ENCODE Consortium
 - Differences in "modularity" for members & users
 - Key role for brokers

- Other Examples of Idea & Data Diffusion
 - RNAi & SRA bases
- Quant. Model of Information Diffusion
 - Based on PLOS ALM
 - Random multiplicative process
 - Moderated by parm.w/ 2 time regimes

Diffusion of a data type (sequenced bases) measured by occurrence in specialty journals

RNAi: Birth of a Field in the Literature Culminating in the 2006 **Nobel**

Source: Gerstein & Douglas. PLoS Comp. Bio. 3:e80 (2007)PubNet.GersteinLab.org

- Intro: Using the Data Exhaust from Consortia
- PubNet Tool for analyzing co-publication patterns
 - Different patterns for Str.
 Genomics centers
- Analysis of Evolution of the ENCODE Consortium
 - Differences in "modularity" for members & users
 - Key role for brokers

- Other Examples of Idea & Data Diffusion
 - RNAi & SRA bases
- Quant. Model of Information Diffusion
 - Based on PLOS ALM
 - Random multiplicative process
 - Moderated by parm.w/ 2 time regimes

Spread of information as a diffusion process

The knowledge of a scientific publication is a piece of information

Based on PLOS ALM data for ~7000 papers

the access of different articles follows a log-normal distribution

Spread of information as a diffusion process

The knowledge of a scientific publication is a piece of information

the access of different articles follows a log-normal distribution

Lectures.GersteinLab.org

Modeling Information diffusion

log-normal distribution suggests a simple model, random multiplicative process for a given paper p:

$$N_t(p) = N_{t-1}(p) (1 + r_t X_t(p))$$

 N_t =cumulative number of accesses for a given paper up to time t

X_t = iid random variable whose mean represents avg. fraction of scientists willing to "spread" the paper at t

r_t = moderating parameter on how the "spreading" changes over time

Modeling Information diffusion

Refine values of r_t for different times

- Intro: Using the Data Exhaust from Consortia
- PubNet Tool for analyzing co-publication patterns
 - Different patterns for Str.
 Genomics centers
- Analysis of Evolution of the ENCODE Consortium
 - Differences in "modularity" for members & users
 - Key role for brokers

- Other Examples of Idea & Data Diffusion
 - RNAi & SRA bases
- Quant. Model of Information Diffusion
 - Based on PLOS ALM
 - Random multiplicative process
 - Moderated by parm.w/ 2 time regimes

- Intro: Using the Data Exhaust from Consortia
- PubNet Tool for analyzing co-publication patterns
 - Different patterns for Str.
 Genomics centers
- Analysis of Evolution of the ENCODE Consortium
 - Differences in "modularity" for members & users
 - Key role for brokers

- Other Examples of Idea & Data Diffusion
 - RNAi & SRA bases
- Quant. Model of Information Diffusion
 - Based on PLOS ALM
 - Random multiplicative process
 - Moderated by parm.w/ 2 time regimes

"Encode authors"

D Wang,

KK Yan, J Rozowsky, E Pan

"Info Flow"

KK Yan

Cost of Seq. & SRA bases

P Muir, S Li, S Lou, D Wang, DJ Spakowicz, L Salichos, J Zhang, GM Weinstock, F Isaacs, J Rozowsky

PubNet.gersteinlab.org & RNAi -- SM Douglas

Acknowledgments

Vision for "Text Mining" -- A Rzhetsky, M Seringhaus

Extra

Over-representation of crystallography among the Nobel Prizes, highlighted by the 2006 Nobels

	MeSH term	Crystallography	Protein Conformation	Chemistry
1970-2006	Related Nobel Prizes	7***	9	36
	Fraction of All PubMed records	0.3%	1.1%	9.3%
	Fraction of All Chemistry records	4%	12%	100%
	Fraction of Available Nobel	19%	25%	100%
1996-2006	Related Nobel Prizes	4***	5	10
	Fraction of All PubMed records	0.6%	2.1%	9.0%
	Fraction of All Chemistry records	7%	23%	100%
	Fraction of Available Nobel	40%	50%	100%

Lectures.GersteinLab.org

Info about content in this slide pack

- General PERMISSIONS
 - This Presentation is copyright Mark Gerstein,
 Yale University, 2015.
 - Please read permissions statement at www.gersteinlab.org/misc/permissions.html
 - Feel free to use slides & images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).
 - Paper references in the talk were mostly from Papers.GersteinLab.org.
- PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://streams.gerstein.info.
 - In particular, many of the images have particular EXIF tags, such as kwpotppt, that can be easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt