Analyzing Personal Genomes:
Prioritizing High-impact Rare & Somatic Variants

Mark Gerstein, Yale

Slides freely downloadable from Lectures.GersteinLab.org
& “tweetable” (via @markgerstein). See last slide for more info.
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Personal Genomics
as a Gateway into Biology

Personal genomes soon will become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Personal Genomics
as a Gateway into Biology

Personal genomes soon will become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Human Genetic Variation

Population of
2,504 peoples

A Cancer Genome

A Typical Genome
[ 4
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Origin of Variants

Somatic ~50 5K

Driver (~0.1%)

Class of Variants
3.5-4.3M

550 — 625K

21-25K
(20Mb)

41 -5M

Prevalence of Variants

Rare* (1-4%)

84.7M

3.6M
60K

88.3M

“Common

Rare (~75%)

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108
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CAN YOU FIND THE PANDA’?

Finding Key
Variants

Germline

Common variants
« Can be associated with phenotype (ie disease) via a Genome-wide Association Study

(GWAS), which tests whether the frequency of alleles differs between cases & controls.

» Usually their functional effect is weaker.
* Many are non-coding
» Issue of LD in identifying the actual causal variant.

Rare variants
» Associations are usually underpowered due to low frequencies.
« They often have larger functional impact
« Can be collapsed in the same element to gain statistical power (burden tests).
* In some cases, causal variants can be identified through tracing inheritance of
Mendelian subtypes of diseases in large families.

McCarthy, M. et al. Nat. Rev. Genet. 2008. 9, 356-369, Zuk, O. et al. PNSA. 2014. Vol. 11, no. 4, MacArthur DG et al. Nature 2014. 508:469-476
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CAN YOU FIND THE PANDA’?

Finding Key
Variants

Somatic

* Overall
« Often these can be conceptualized as very rare variants
A challenge to identify somatic mutations contributing to cancer is to find driver
mutations & distinguish them from passengers.

* Drivers
 Driver mutation is a mutation that directly or indirectly confers a selective growth
advantage to the cell in which it occurs.
* A typical tumor contains 2-8 drivers; the remaining mutations are passengers.

 Passengers
« Conceptually, a passenger mutation has no direct or indirect effect on the

selective growth advantage of the cell in which it occurred.
Vogelstein B. Science 2013. 339(6127):1546-1558
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Association of Variants with Diseases
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Analyzing Personal Genomes:
Prioritizing High-impact Rare & Somatic Variants

 Introduction: the landscape of  Non-coding Variants #2
variants in personal genomes

« Characterizing Rare Variants in

Coding Regions * Having observed difference in molecular
activity in many contexts

« Putting it together in workflows

* On surface & in interior bottlenecks

: Non-codlng Variants #1 + Systematically weighting all the features

* suggesting non-coding drivers
* Prioritzing rare germline variants

* Need to correct for over-dispersion in
bionomial

+ Parameterized according to replication
timing
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Analyzing Personal Genomes:
Prioritizing High-impact Rare & Somatic Variants

 Introduction: the landscape of
variants in personal genomes

« Characterizing Rare Variants in
Coding Regions
- ldentifying with STRESS

cryptic allosteric sites
* On surface & in interior bottlenecks

* Non-coding Variants #1
- Annotating non-coding regions
on different scales with MUSIC

- Prioritizing rare variants with
“sensitive sites”
(human-conserved)

— Prioritizing in terms of network
connectivity (eg hubs)

* Non-coding Variants #2
— Prioritizing using AlleleDB in
terms of allelic elements
* Having observed difference in molecular
activity in many contexts

« Putting it together in workflows

- Integrating evidence on non-
coding variants with FunSeq
« Systematically weighting all the features
* suggesting non-coding drivers
* Prioritzing rare germline variants

- Using Larva to do burden testing

on non-coding annotation
* Need to correct for over-dispersion in
bionomial

* Parameterized according to replication
timing
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Unlike common SNVs, the statistical power with which we can
evaluate rare SNVs in case-control studies is severely limited

Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)
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Models of Protein Conformational Change

Motion Vectors from Normal Modes (ANMs)
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PDBID: 3REU : Characterizing uncharacterized variants

Adapted from Fuglebakk et al, 2014 <= Finding Allosteric sites
<= Modeling motion
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Predicting Allosterically-Important Residues at the Surface

1. MC simulations generate a large number of candidate sites
2. Score each candidate site by the degree to which it perturbs large-scale motions
3. Prioritize & threshold the list to identify the set of high confidence-sites
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. . _ 2 Surface region with high
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m= I
Surface region with low
density of candidate sites
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Adapted from Clarke*, Sethi*, et al (in press)



Predicting Allosterically-Important Residues at the Surface

PDB: 3PFK

Adapted from Clarke*, Sethi*, et al (in press)
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Predicting Allosterically-Important Residues within the Interior

weight edges using
motion vectors

AYA /3 \7, @ —
identify

critical residues

Adapted from Clarke*, Sethi*, et al (in press)
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Predicting Allosterically-Important Residues within the Interior
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Adapted from Clarke*, Sethi*, et al (in press)
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STRESS Server Architecture: Highlights

stress.molmovdb.org

Thin front end

EC2

o |

[ |

Home Documen tation Examples

Submit a new job:

Enter PDB ID (ex: 3D3D): Or upload PDB File:

oose File | No file chosen

Select which modules to run:

o Surface-critical

# Interior-critical

STRESS A computationally-efficient framework for identifying potential allosteric residues a

in surface and within the interior

Retrieve job results:

Job id: Retrieve

EC2

EC2

=<

Auto-scalable
back-end

EC2

X
=

RESTful
storage

* Alight front-end server handles incoming requests, and powerful back-end
servers perform calculations.

e Auto Scaling adjusts the number of back-end servers as needed.

* Atypical structure takes ~30 minutes on a E5-2660 v3 (2.60GHz) core.

* Input & output (i.e., predicted allosteric residues) are stored in S3 buckets.

Adapted from Clarke*, Sethi*, et al (in press)
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Intra-species conservation of predicted allosteric residues

1000 Genomes
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Intra-species conservation of predicted allosteric residues
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Unlike common SNVs, the statistical power with which we can
evaluate rare SNVs in case-control studies is severely limited

Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)
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Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

Rationalizing disease variants in the context of allosteric behavior
with allostery as an added annotation

® @ Predicted allosteric (surface | interior)
® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)

oCEmD @5 GBOGED GEENENGO “e o WO e o
000 O O@®® 00 000 O @O O O ©® O @O 00 O VO O
ap ' ' '
@ e o @e0e® @@ o o o oo o : 0. @ o
O ) oo @ @ee: & a»
® o0 o < o : @ e :o0: 0
residue 150 residue 350

[Sethi et al. COSB ("15)]



Analyzing Personal Genomes:
Prioritizing High-impact Rare & Somatic Variants

 Introduction: the landscape of
variants in personal genomes

« Characterizing Rare Variants in
Coding Regions
- ldentifying with STRESS

cryptic allosteric sites
* On surface & in interior bottlenecks

* Non-coding Variants #1
- Annotating non-coding regions
on different scales with MUSIC

- Prioritizing rare variants with
“sensitive sites”
(human-conserved)

— Prioritizing in terms of network
connectivity (eg hubs)

* Non-coding Variants #2
— Prioritizing using AlleleDB in
terms of allelic elements
* Having observed difference in molecular
activity in many contexts

« Putting it together in workflows

- Integrating evidence on non-
coding variants with FunSeq
« Systematically weighting all the features
* suggesting non-coding drivers
* Prioritzing rare germline variants

- Using Larva to do burden testing

on non-coding annotation
* Need to correct for over-dispersion in
bionomial

* Parameterized according to replication
timing

Lectures.GersteinLab.org

%3



Sequence features, incl. Conservation

Non-coding Annotations:

Overview

Functional Genomics

k4 } .

» Removing artefacts
Identify large blocks of » Normalization
- | repeated and deleted * Window smoothing
| sequence: *
» Within the human
reference genome Segmentation of processed
B the human data into active regions:
population * Binding sites
* Between closely related ] Transcrlptlonally actis
mammalian genomes E6.0NS

Large-scale sequence
similarity comparison

Signal processing of raw
experimental data:

v

v

v

dentify smaller-scale
repeated blocks using

statistical models

larger annotation blocks

Group active regions into

Chip-seq (Epigenome & seq. specific TF)
and ncRNA & un-annotated transcription

L
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[Alexander et al., Nat. Rev. Genet. ('10)]
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e Generate & threshold the signal

Summarizing the Signal:

"Traditional” ChipSeq Peak Calling

ChlIP

profile to identify candidate
target regions
- Simulation (PeakSeq),

— Local window based Poisson (MACS),
— Fold change statistics (SPP) wp b oals sysassdaldbssasadaa

Threshold

Potential Targets (LI ETEN LI N | THn el

Normalized Control

Score against the control

Significantly Enriched targets Wl |1l

Now an update: "PeakSeq 2" => MUSIC

einLab.org
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Multiscale Analysis, Minima/Maxima based

Coarse Segmentation

:mm__nmpmn p3613 p353 p342  p323  p3l.3  p3ld p223  p2l3 pi33  pl2 qll  qi2  q2ld  q22 q241  q25.2 q3l.1

Q321 q323 q4211  qd423 qda

.

27,140 kb

204 kb

27,160 kb 27,180 kb 27,200 kb 27,220 kb 27,240 kb 27,260 kb 27,280 kb

27,300 kb 27,320 kb

Harmanci et al, Genome Biology 2014, MUSIC.gersteinlab.org
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Multiscale Decomposition

20kb
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0-64

Increasing Scale
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Multiscale Decomposition
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Analyzing Personal Genomes:
Prioritizing High-impact Rare & Somatic Variants

 Introduction: the landscape of
variants in personal genomes

« Characterizing Rare Variants in
Coding Regions
- ldentifying with STRESS

cryptic allosteric sites
* On surface & in interior bottlenecks

* Non-coding Variants #1
- Annotating non-coding regions
on different scales with MUSIC

- Prioritizing rare variants with
“sensitive sites”
(human-conserved)

— Prioritizing in terms of network
connectivity (eg hubs)

* Non-coding Variants #2
— Prioritizing using AlleleDB in
terms of allelic elements
* Having observed difference in molecular
activity in many contexts
« Putting it together in workflows

- Integrating evidence on non-
coding variants with FunSeq
« Systematically weighting all the features
* suggesting non-coding drivers
* Prioritzing rare germline variants

- Using Larva to do burden testing

on non-coding annotation

* Need to correct for over-dispersion in
bionomial

* Parameterized according to replication
timing

Lectures.GersteinLab.org
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Finding "Conserved” Sites in the Human Population:

Negative selection in nhon-coding elements based on
Production ENCODE & 1000G Phase 1

Broad Categories
Coding H

Genomic Avg

Enhancer

« Broad categories
of regulatory
regions under

(Non-coding RNA) ncRNA

- ceeoaeas - cemweeeae
T

(DNase | . .
hypersensitive DHS negatlve SeleCt|On
sites) _ ]
{ TFss N e « Related to:
(Transcription
factor binding 1FBS < EEIEEL ENCODE, Nature, 2012
sites) Ward & Kellis, Science, 2012
: Mu et al, NAR, 2011
\ '
Pseudogene |—|

\ I \ w \ \
056 058 060 062 064 066 0.68

Fraction of rare SNPs
Depletion of Common Variants .
in the Human Population [Khurana et al., Science (‘“13)] %



A Broad Categories B

Specific Categories

GenomicAvg 27M SNPs |
Coding  0.27M

>
Missense | 0.15M
Synonymous | 0.12M
UTR| 0.4M

Enhancer 1Y

DHS | 4.8M b

TFSS

TFBS

General

Chromatin

TF Families (motifs)
Coding \ H
HMG
bz/P°
sTAT [N

e
H MADs-boxe
NR
Homeodomain®
€ .
e .

050 055 060 065 0.70

0.56 0.6 0.64 0.68 0.72
Fraction of rare SNPs

Sub-categorization possible
because of better statistics from
1000G phase 1 v pilot

Differential
selective
constraints
among
specific sub-
categories

[Khurana et al., Science (‘13)]
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~0.4% genomic coverage (™~ top 25)

~0.02% genomic coverage (top 5)
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Fraction of rare SNPs
A Broad Categories B
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Genomic Avg  27M SNPs
TF Families (motifs)
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Fraction of rare SNPs

Sub-categorization possible
because of better statistics from
1000G phase 1 v pilot

Defining
Sensitive
non-
coding
Regions

Start 677 high-

resolution non-coding
categories; Rank & find
those under strongest
selection

[Khurana et al., Science (‘13)]
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SNPs which break TF motifs are under

Genomic Avg  27M SNPs
Coding  0.27M

>
Missense | 0.15M
Synonymous | 0.12M
UTR| 0.4M
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Fraction of rare SNPs
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[Khurana et al., Science (‘13)]
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Analyzing Personal Genomes:
Prioritizing High-impact Rare & Somatic Variants

 Introduction: the landscape of
variants in personal genomes

« Characterizing Rare Variants in
Coding Regions
- ldentifying with STRESS

cryptic allosteric sites
* On surface & in interior bottlenecks

* Non-coding Variants #1
- Annotating non-coding regions
on different scales with MUSIC

- Prioritizing rare variants with
“sensitive sites”
(human-conserved)

— Prioritizing in terms of network
connectivity (eg hubs)

* Non-coding Variants #2
— Prioritizing using AlleleDB in
terms of allelic elements
* Having observed difference in molecular
activity in many contexts

« Putting it together in workflows

- Integrating evidence on non-
coding variants with FunSeq
« Systematically weighting all the features
* suggesting non-coding drivers
* Prioritzing rare germline variants

- Using Larva to do burden testing
on non-coding annotation

* Need to correct for over-dispersion in
bionomial

* Parameterized according to replication
timing

Lectures.GersteinLab.org
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Relating Non-coding Annotation
to Protein-coding Genes via Networks

Regulatory elements

— — — ®
v

Assigning proximal sites (< 1Kb) to target genes

(¥, (Y,

Proximal A EY00) 000 W\ e )
Edge
~500K Prox. Edges

o—o—2 9
v

Assigning distal sites (10Kb-1Mb) to targets

~26K
Distal st

oo 0 — oL— = T
~700K Edges ] SR
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Methylation H3K27ac Gene 1 Gene2 Gene3 Scal Rl 5
——————————— = e SCAlE ¥
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|
@ H1-hESC | : : | I
C 1 |
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— HelaSs -- | ] ] l Connecting Distal Elements
8 HepG2 ] ! via Activity Correlations.
| | |
K562 | I |
I I . .
W : l : weak | Other strategies to create linkage

incl. eQTL and Hi-C. Much in
recent Epigenomics Roadmap.




Power-law distribution Hubs Under Constraint:

log P) b "\ o A Finding from the
1 it Network Biology

— Community
%) Hub
c >
5
o _* High likelihood of Not under positive
] L e . O .
= positive selection selection
0 Lower likelihood of No data about
o ® positive selection O positive selection
—
log k

log(Degree)

* More Connectivity, More Constraint: Genes & proteins that
have a more central position in the network tend to evolve
more slowly and are more likely to be essential.

* This phenomenon is observed in ¢
many organisms & different kinds of networks

- yeast PPI - Fraser et al ('02) Science, Bl
('03) BMC Evo. Bio.

— Ecoli PPI - Butland et al ('04) Nature .
- Worm/fly PPI - Hahn et al ("05) MBE
- miRNA net - Cheng et al ('09) BMC Genomics 2
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Unified network
degree (log scale)

Regulatory Hubs
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Analyzing Personal Genomes:
Prioritizing High-impact Rare & Somatic Variants

 Introduction: the landscape of
variants in personal genomes

« Characterizing Rare Variants in
Coding Regions
- ldentifying with STRESS

cryptic allosteric sites
* On surface & in interior bottlenecks

* Non-coding Variants #1
- Annotating non-coding regions
on different scales with MUSIC

- Prioritizing rare variants with
“sensitive sites”
(human-conserved)

— Prioritizing in terms of network
connectivity (eg hubs)

* Non-coding Variants #2
— Prioritizing using AlleleDB in
terms of allelic elements
* Having observed difference in molecular
activity in many contexts

« Putting it together in workflows

- Integrating evidence on non-
coding variants with FunSeq
« Systematically weighting all the features
* suggesting non-coding drivers
* Prioritzing rare germline variants

- Using Larva to do burden testing

on non-coding annotation
* Need to correct for over-dispersion in
bionomial

* Parameterized according to replication
timing

40 = Lectures.GersteinLab.org



Diploid personal genome
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How to build a personal genome

SNV Larger SV
(fasta; reference)
TGGAAGAARACKEIETIT.. &

(vcf, variants

¢
Reference 4,%0
genome /\/\,

| | phased or unphased)

TIGIGIAIA|GIAIAJAICICIGIAIGITITIT].. ]

0 °d
Personal x MQ o el (fasta; for each

\

genome AIGIGIAICICIG TITITI... haplotype)

alleleseq.gersteinlab.org Rozowsky et al. Mol Syst Biol (2011)

.GersteinLab.org
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Allele-specific binding and expression

Paternal | |
DNA Genomic variants
gene . : :
affecting allele-specific behavior

e.g. allele-specific binding

transcription factor (ASB)
N/—‘(DNA-binding protein)
Maternal
DNA .

AA
— /N H \ A e.g. allele-specific expression
Paternal P~/ (ASE)
DNA C gene

Maternal

%,
DNA * gene
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Inferring Allele Specific Binding/Expression
using Sequence Reads

RNA/ChIP-Seq Reads

ACTTTGATAGCGTCAATG X
CTTTGATAGCGTCAATGC
CTTTGATAGCGTCAACGC ~AACGC...
TTGACAGCGTCAATGCAC TF
TGATAGCGTCAATGCACG
ATAGCGTCAATGCACGTC )
TAGCGTCAATGCACGTCG J
CGTCAACGCACGTCGGGA
GTCAATGCACGTCGAGAG L AATGC...
CAATGCACGTCGGGAGTT
AATGCACGTCGGGAGTTG
TGCACGTTGGGAGTTGGC Haplotypes with a
Heterozygous Polymorphism
10 x T
2 x C

Interplay of the annotation and individual sequence variants



AlleleDB: Building 382 personal genomes to detect
allele-specific variants on a large-scale

® >
N—

1. Build personal genomes ‘ I T Variants

(1000 Genomes
Project)

x382 —
_ N———
2. Align ChIP-seq & RNA-seq reads RNA-seq:
(QEUVADIS)
ChIP-seq:
(ENCODE)

3. Detect allele-specific variants
via a series of filters and tests

Many Technical Issues:
Reference bias, Ambiguous
mapping bias, Over-dispersed " —

(non binomial null) —F
allele-specific SNV

alleledb.gersteinlab.org
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AlleleDB: Annotating rare & common allele-specific
variants over a population

19 Ko} | hotd .
54, 0485, 084 54, 8549, 04| 54,58, 000 54,869, 00| 54, 468, 004 54,474, 04| 54,475, 064 54,480, 00| L n te a Ce S WI

el | UCSC genome
output I browser

ucsc [ . Showing

rack 1 == = I ZNF331 gene
Position structure

alleledb.gersteinlab.org Chen J. et al. (Nature Commun, in press)

1
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AlleleDB: Annotating rare & common allele-specific
variants over a population

19 Ko | hotd

| e wme e T e e wne waw e |nterfaces with
| UCSC genome
browser

ose b « Showing

track 122 =% ——= ZNF331 gene

Position P § SEEIESETSE structure

Allele
DB |
output

-TTTTTT T A
1
1
I

\

~

(o“ ¢ @“Q @@% g@}zﬁz@i@i@z@% “0%@9&
NA12878 . ; :j§j::’f§§--
0| wiser Allele- POLZE/M?Cé : “ 5 EOL:Z: : _Allele-
‘3“ NA12892 specific : H H = RN - SpeCiﬁc_
indi POLY FOL2 Pl
S varante. e T T variants |
O | NA12043 —— e
= NA11894 e -
YNA10847 ”é ————

" Chen J. et al. (Nature Commun, in press)
AL



Collecting ASE/ASB variants
into allele-specific genomic regions

Does a particular genomic element have a higher tendency to be allele-specific?
Fisher’s exact test, for the enrichment of allele-specific variants in the element (with
respect to non-allele-specific variants that could potentially be called as allelic)

+ allele-specific % % % + % +

' non-allele-specific \
\
\ \ \ \
' \ \ \ \ \
N “ \ \ \ !
\ \ \ '
' \ v \ \ !
1 1 1
I ! II ! /I II
1 1 ’ ! ’ ’
1 1 / ! ’ !
1 1 l ! / /
1 1 / ! I U
1 1 ! 1 /

Hum refe + ”

—> —>

alleledb.gersteinlab.org Chen J. et al. (Nature Commun, in press)



Groups of elements that are enriched or
depleted in allelic activity

CTCF

Enrichment ASB o
(=) ASE m
1
1
ok E h
nhancer
g TJ Tk
A1 R N . |
% 1 Promoter
BRt piial s P
£ : SA1 |
§, ] POL2 *kk |
1 RPB2 !
1 |
1 |
1 |

( PU.1
...............................................
" -‘ I Intron

R, | v |
-0.6 -0.4 -0.2 0.0

0.0 0.2 0.4 0.6
log odds ratio (w.r.t. expected)

- b

Lectures.GersteinLab.org

Chen J. et al. (Nature Commun, in press) a
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Analyzing Personal Genomes:
Prioritizing High-impact Rare & Somatic Variants

 Introduction: the landscape of
variants in personal genomes

« Characterizing Rare Variants in
Coding Regions
- ldentifying with STRESS

cryptic allosteric sites
* On surface & in interior bottlenecks

* Non-coding Variants #1
- Annotating non-coding regions
on different scales with MUSIC

- Prioritizing rare variants with
“sensitive sites”
(human-conserved)

— Prioritizing in terms of network
connectivity (eg hubs)

* Non-coding Variants #2
— Prioritizing using AlleleDB in
terms of allelic elements
* Having observed difference in molecular
activity in many contexts

« Putting it together in workflows

- Integrating evidence on non-
coding variants with FunSeq
« Systematically weighting all the features
* suggesting non-coding drivers
* Prioritzing rare germline variants

- Using Larva to do burden testing

on non-coding annotation
* Need to correct for over-dispersion in
bionomial

* Parameterized according to replication
timing

Lectures.GersteinLab.org
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Identification of non-coding candidate drivers amongst

somatic variants: Scheme

Cancer genome
variants

® SNV W Indel

|

|

|
1000
Genomes - WA

screen

Non-coding annotation

iy~ —(H)C

Degree of negative selection

*e =
I ]
I ]
| ]
Hﬁi&%--" 1000 Genomes variants
[
[
[
[
T
[
[
[
[
)

[ [ I T
[ [ [
[ | [ [
[ \ [
I [ [

Sensitive - = o0 O (@] - O
e

Motif disruptive score

Occurrence in multiple samples

,
[I .-
[

Candidate driver ® [Khurana et al., Science (‘13)]

e LD ==
Motif | |
breaking ] -
]

[ Degree of network centrality

Enhancer/ pemem—aa S . s

Promoter | ‘@ SRk
[ -” Cancersample % & .. o (o
[ B X '
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Flowchart for 1 Prostate Cancer Genome
(from Berger et al' '11) |1829 somatic SNVs |

Prostate - K
cancer ( Found in 1000 Genomes ?)

be driver

enomes Y Uﬂ|l]‘(€|y to
Sereen Unlikely to N be driver
L

~

Annotated ?

In
Gltra-sensitive region D
[ ]

v o]
Functional
annotation

a. Sensitive

Gene under
strong selection ?

» In
( Breaks TF motif ? ) ( ultra-sensitive region ? )

f/\f [s]

N/\Y ( Target gene known ? )

N/ \Y
( Target gene known ) ( Target gene known ? )

~ N ~Ien

connectivity
(Target gene isfp hub ?) (Target gene \sahub?) (Target gene is a hub ?)

N Y

b. Disruptive

&
~ =z
>

N

ole Z /3
ﬂ'\?
g
O
)
g
g
<

N [ ]S

Candidate drivers

[Khurana et al., Science (*13)]
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==

FunSeq2 - A flexible framework to prioritize regulatory mutations from cancer genome sequencing

Site integrates

[ AUGED T Resuts | Downloads  Dooumenisfin  FAQ | user variants

e with large-scale

< Note: In addition to on-site calculation, we also provide

This tool is specialized to prioritize somatic variants from cancer scores for all possiblg noncoding SNVS of GRCh37/hg19 con t eXt
whole genome sequencing. It contains two components : 1) building under 'Downloads' (without annotation and recurrence

data context from various resources; 2) variants prioritization. We analysis).

provided downloadable scripts for users to customize the data Input File: (only for hg19 SNVs)

context (found under 'Downloads'). The variants prioritization step is

) ) | Choose File | No file chosen
downloadable, and also implemented as web server (Right Panel), —

with pre-processed data context. BED or VCF files as input. Sample input file P e e e e e e e = = = - -
Output Format: | I

Instructions bed * 1 |

< Input File - BED or VCF formatted. Click "green" button to add MAF: : :

multiple files. With multiple files, the tool will do recurrent analysis. 0 | Data context :

(Note: for BED format, user can put variants from multiple genomes

. " . " Minor allele frequency threshold to filter polymorphisms from ! 1

in one file, see Sample input file .) 1KG (value 0~1) | |

< Recurrence DB - User can choose particular cancer type from the ) | |

database. The DB will continue be updated with newly available Cancer Type from Recurrence DB: Summary table L e e e e e e e e e Y Y 2o a

WGS data. All Cancer Types s

< Gene List - Option to analyze variants associated with particular Add a gene list (Optional)

set of genes. Note: Please use Gene Symbols, one row per gene.

< Differential Gene Expression Analysis - Option to detect Add differential gene expression analysis (Optional)

differentially expressed genes in RNA-Seq data. Two files needed:

expression file & class label file. Please refer to Expression input files

for instructions to prepare those files.

User Weighted scoring scheme
Variants

F un Se q .gersteinlab.org Highlighting variants

[Fu et al., GenomeBiology ('14)]




= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)

- entropy based method
HOT region

+ Sensitive region

i Polymorphisms

_____________________________

Genome NI N W Y S I Y O N |

[Fu et al., GenomeBiology ('14)]
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= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)

- entropy based method
HOT region

+ Sensitive region

i Polymorphisms

_____________________________

[Fu et al., GenomeBiology ('14)]
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= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)

- entropy based method
HOT region

+ Sensitive region

i Polymorphisms

_____________________________

Genorme SN N T s | I |

P
Feature weight: Wq = 1 + Pad logzpd + (1 — pd)logz(l — pd)
1% T W, l p = probability of the feature overlapping natural polymorphisms

For a variant: Score = E w, Oof observed features

[Fu et al., GenomeBiology ('14)]

56 -



Germline pathogenic variants show

higher core scores than controls

Score

R VAR NI RYA

Q
-

unmatched: 0.86

0.8

0.6

True Positive Rate
0.4

0.2
1

0.0

HGMD Matched region  Matched TSS Unmatched
regulatory (1,527) (4,258) (13,861) (144,086)

| | | | |
0.0 0.2 0.4 0.6 0.8

False Positive Rate

3 controls with natural polymorphisms (allele frequency >= 1% )
1. Matched region: 1kb around HGMD variants
2. Matched TSS: matched for distance to TSS

3. Unmatched: randomly selected

Ritchie et al., Nature Methods, 2014

[Fu et al., GenomeBiology ('14, in revision)]

1.0
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Analyzing Personal Genomes:
Prioritizing High-impact Rare & Somatic Variants

 Introduction: the landscape of
variants in personal genomes

« Characterizing Rare Variants in
Coding Regions
- ldentifying with STRESS

cryptic allosteric sites
* On surface & in interior bottlenecks

* Non-coding Variants #1
- Annotating non-coding regions
on different scales with MUSIC

- Prioritizing rare variants with
“sensitive sites”
(human-conserved)

— Prioritizing in terms of network
connectivity (eg hubs)

* Non-coding Variants #2
— Prioritizing using AlleleDB in
terms of allelic elements
* Having observed difference in molecular
activity in many contexts

« Putting it together in workflows

- Integrating evidence on non-
coding variants with FunSeq
« Systematically weighting all the features
* suggesting non-coding drivers
* Prioritzing rare germline variants

- Using Larva to do burden testing

on non-coding annotation
* Need to correct for over-dispersion in
bionomial

* Parameterized according to replication
timing

22 = Lectures.GersteinLab.org



Mutation recurrence
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Mutation recurrence
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Cancer Somatic Mutation Modeling

« 3 models to evaluate
the significance of
mutation burden

« Suppose there are k
genome elements. For
element /, define:

— n;: total number of
nucleotides

— x;: the number of
mutations within the
element

— p: the mutation rate

— R: the replication timing
bin of the element

Model 1: Constant Background
Mutation Rate (Model from
Previous Work)

%; : Binomial(n;, p)

Model 2: Varying Mutation Rate
xi|p; : Binomial(n;, p;)

pi : Beta(u, o)

Model 3: Varying Mutation Rate
with Replication Timing
Correction

Xi|p; : Binomial(n;, p;)
p;: : Beta(u|R, 0|R)
1|R,o|R : constant within the same R bin

[Lochovsky et al. (’15)]
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LARVA Model Comparison

« Comparison of mutation count frequency implied by the binomial
model (model 1) and the beta-binomial model (model 2) relative to
the empirical distribution

« The beta-binomial distribution is significantly better, especially for
accurately modeling the over-dispersion of the empirical distribution

—o— empirical
Q. —&— beta-binomial
o /o'°°\ —6— binomial
o
[\
o
© o
S | / \o
o S \
> / °
‘»
C o \
q_) o
© © A / \
o 0°%0
o
8°/E %, '\
o~ o 05 ©p
.°° J P °°o°‘o 9
S _ o’o o/ / °°g°
o ° ° ’ 08\888
o J / o 98g
[ J ) \o 9999
o °, O/ \ 9899
o 0.0 oo' O, 0.0 “°°°°°°°°
3 o
O og§88882000°°° °°°°Oooooooooooooooogggs
O | T T T T T I
0 10 20 30 40 50 60

[Lochovsky et al. (15)]

mutation counts
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=

probablity
00 +0.2 +0.4 +0.6

= - 1 Il i
Adding DNA replication : |
timing correction ) ) | 3
further improves the :. | o3
beta-binomial model : {M 1 | o

CI) 1I0 2IO 3I0 4IO 5I0 6I0 7IO

+0.2

0

Bottom 10% of rep. timing bins
. requires large correction
- e = o— e

p

2

(C)

Bin Index
observed-repTiming bottom 10%
beta—binomial-repTiming bottom 10%
binomial-repTiming bottom 10%
observed-repTiming top 10%
beta—binomial-repTiming top 10%
binomial-repTiming top 10%

O0DEEE M

™™ op 10% of
mm[ﬂ Top 10% of rep. timing bins
requires little correction
4 6 8 10 12 14

somatic mutation count

[Lochovsky et al. NAR (’15)]
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LARVA Implementation

http://larva.gersteinlab.org/
Freely downloadable C++ program

— Verified compilation and correct execution on Linux
A Docker image is also available to download

- Runs on any operating system supported by Docker

Running time on transcription factor binding sites (a worst case input size) is ~80

min

- Running time scales linearly with the number of annotations in the input

o o [im} larva.gersteinlab.org @]

LARVA

Large-scale Analysis of Variants in noncoding Annotations

LARVA is a computational framework designed to facilitate the study of noncoding variants. It addresses issues
that have made it difficult to derive an accurate model of the background mutation rates of noncoding elements in
cancer genomes. These issues include limited noncoding functional annotation, great mutation heterogeneity, and
potential mutation correlations between neighboring sites. As a result, there is substantial overdispersion in the
mutation count of noncoding elements.

LARVA integrates a comprehensive set of noncoding functional elements, modeling their mutation count with a
beta-binomial distribution to handle overdispersion. Moreover, LARVA uses regional genomic features such as
replication timing to better estimate local mutation rates and mutational enrichments.

This zip archive contains LARVA's source code. This software counts variant intersections with
LARVA annotations, and estimates the significance of highly mutated annotations with a beta-binomial
source code distribution model of variant counts. The data context files below must be downloaded in order to use
LARVA. See this README for details.
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LARVA Results

SE —|—e— observed-bottom 10% /°
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[Lochovsky et al. (15)]



Analyzing Personal Genomes:
Prioritizing High-impact Rare & Somatic Variants

 Introduction: the landscape of
variants in personal genomes

« Characterizing Rare Variants in
Coding Regions
- ldentifying with STRESS

cryptic allosteric sites
* On surface & in interior bottlenecks

* Non-coding Variants #1
- Annotating non-coding regions
on different scales with MUSIC

- Prioritizing rare variants with
“sensitive sites”
(human-conserved)

— Prioritizing in terms of network
connectivity (eg hubs)

* Non-coding Variants #2
— Prioritizing using AlleleDB in
terms of allelic elements
* Having observed difference in molecular
activity in many contexts

« Putting it together in workflows

- Integrating evidence on non-
coding variants with FunSeq
« Systematically weighting all the features
* suggesting non-coding drivers
* Prioritzing rare germline variants

- Using Larva to do burden testing

on non-coding annotation
* Need to correct for over-dispersion in
bionomial

* Parameterized according to replication
timing
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Analyzing Personal Genomes:
Prioritizing High-impact Rare & Somatic Variants

 Introduction: the landscape of  Non-coding Variants #2
variants in personal genomes

« Characterizing Rare Variants in

Coding Regions * Having observed difference in molecular
activity in many contexts

« Putting it together in workflows

* On surface & in interior bottlenecks

: Non-codlng Variants #1 + Systematically weighting all the features

* suggesting non-coding drivers
* Prioritzing rare germline variants

* Need to correct for over-dispersion in
bionomial

+ Parameterized according to replication
timing

740,



AlleleD B.gersteinlab.org LARVA.gersteinIab.org

J Chen, J Rozowsky, L LOChOVSky,
TR Galeev, A Harmanci,
R Kitchen, J Bedford, ~|’E %Pang, Y Fu,
A Abyzov, Y Kong, L Regan urana
CostSeq2 MUS'C.gerst.einIab.org
> MuUir sLisL AHarmanci,

S O J Rozowsky

D Wang, DJ Spakowicz,

L Salichos, J Zhang, F Isaacs,  5ichive gersteinlab.org/proj/

J Rozowsky
netsnp
Funseq.gersteinlab.org e Khurana, v Fu,
_&- J Chen
Funseqz.gersteinlab.org
STRESS.moImovdb.org

Y Fu, e Khurana, z Liy, )
S Lou, J Bedford, xJ Mu, Ky D Clarke, aSethi s L,

Yip, V Colonna, XJ My, ..., S Kumar, R W.F. Chang,
1000 Genomes J Chen
Project consortium, et al Acknowledgments

Hiring Postdocs. See gersteinlab.org/jobs
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Predicting Allosterically-Important Residues within the Interior

weight edges using .
% g g gii ovect;::;i;::‘ COVZ] — (rl ® I'J)
Sy ST ¢y = Covy 1N
Dj; = —log(1Cyl)

Adapted from Clarke*, Sethi*, et al (in press)
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[Fu et al., GenomeBiology ('14)]

Loss- and gain- of motif mutations

Loss-of-motif

@ % mRNA
/\_/\_/

C TAT I TAT

T Promoter Gene

2.0

1.0 @ Mutation* l

0.0 ‘ ‘ ‘ §
5 10 15 TATCTAT

Gain-of-motif

)
CGGAGG
—C  —

2.0

10 A * |
§ //v\/\/ mRNA

0.0
| | | | | | /\/\/
ooe [
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Many Technical Issues in Determining ASE/ASB:
Reference Bias

ASE/ASB Example:

- GTCAATGCAC (naive alignment against reference)
..GTCAATGCACG
..GTCAATGCACGTC
..GTCAATGCACGTCG Null Example:
..GTCAACGCACGTCGGGA ACTTTGATAGCGTCAATG
GTCAATGCACGTCGAGAG CTTTGATAGCGTCAACGC
CAATGCACGTCGGGAGTT TTGACAGCGTCAATGCAC
AATGCACGTCGGGAGTITG ATAGCGTCAATGCACGT...
Allele-S ific SNP Binomial Null Distribution TAGCGTCAACGCACGT...
ele-Specitic S = H H : CGTCAACGCACGT...
(no allele-specific behavior) CAATGCACGT.
- AATGCACGT...
O
o _]
O
N
=
(4]
- —_
@
=
o
2 2
LL ' B
=
o
C) —
Lo
D —
| | | | ™M
0.0 0.2 04 06 0.8 1.0
Reference Allele Alternate Allele

Fraction of Reads Mapping to Alternative Allele

[Rozowsky et al., MSB (“11)]
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|dentification of non-coding candidate drivers amongst
somatic variants: Examples

Prostate

1on Garomes WOGY_) Validation of a candidate driver identified in prostate cancer
N e B sample in WDR74 gene promoter

QO Sanger sequencing in 19 additional samples confirms the

recurrence
Sanger sequencing of
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[Khurana et al., Science (‘13)]



Info about content in this slide pack

 General PERMISSIONS

- This Presentation is copyright Mark Gerstein,
Yale University, 2015.

- Please read permissions statement at

www.gersteinlab.org/misc/permissions.html .

- Feel free to use slides & images in the talk with PROPER acknowledgement
(via citation to relevant papers or link to gersteinlab.org).

- Paper references in the talk were mostly from Papers.GersteinLab.org.

« PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and

clipped images in this presentation see http://streams.gerstein.info .

- In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be
easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt
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