Bioinformatics: Structural Variant Identification

1. Paired ends

Methods to Find SVs

4. Local Reassembly

[Snyder et al. Genes & Dev. ('10)]

Read Depth

Reads to Signal Track

Reads (fasta) + quality scores (fastq) + mapping (BAM)

Reads => Signal (Intermediate file)

Accumulating @ >1 Pbp/yr (currently), ~20% of tot. HiSeq output

Example of Application to RD data

Lectures.GersteinLab.org

8

- To get highest resolution on breakpoints need to smooth & segment the signal
- BreakPtr: prediction of breakpoints, dosage and crosshybridization using a system based on Hidden Markov Models

Korbel*, Urban* et al., PNAS (2007)

Statistically integrates array signal and DNA sequence signatures (using a discrete-valued bivariate HMM)

Korbel*, Urban* *et al.,* PNAS (2007)

Mean-shift-based (MSB) segmentation: no explicit model

- For each bin attraction (meanshift) vector points in the direction of bins with most similar RD signal
- No prior assumptions about number, sizes, haplotype, frequency and density of CNV regions
- Not Model-based (e.g. like HMM) with global optimization, distr. assumption & parms. (e.g. num. of segments).
- Achieves discontinuity-preserving smoothing
- Derived from image-processing applications

Split Read

Read-depth works well on a variety of sequencing platforms but provides imprecise breakpoints

[Abyzov et al. Gen. Res. ('11)]

[NA18505]

Split-read Analysis

Paired-End

Paired-End Mapping

- Both paired-ends map within repeats.
- Limited the distance between pairs; therefore, neither large nor very small rearrangements can be detected

High-Resolution Paired-End Mapping (HR-PEM)

<u>Overall</u> <u>Strategy for</u> <u>Analysis of</u> <u>NextGen</u> <u>Seq. Data</u> <u>to Detect</u> <u>Structural</u> Variants

Pseudogenes & Genomic Duplications

Pseudogenes are among the most interesting intergenic elements

- Formal Properties of Pseudogenes (Ψ G)
 - Inheritable
 - Homologous to a functioning element ergo a repeat!
 - Non-functional
 - No selection pressure so free to accumulate mutations
 - Frameshifts & stops
 - Small Indels
 - Inserted repeats (LINE/Alu)
 - What does this mean? no transcription, no translation?...

Identifiable Features of a Pseudogene (ψRPL21)

[Gerstein & Zheng. Sci Am 295: 48 (2006).]

Two Major Genomic Remodeling Processes Give Rise to Distinct Types of Pseudogenes

[Gerstein & Zheng. Sci Am 295: 48 (2006).]

Impact of Genetic Variability: Loss-of-function

- Previous LoFs are considered as having high probability of being deleterious
- Surprisingly, ~ 100 LoF variants per genome, 20 genes are completely inactivated
- Among ~100 LoFs, we estimate 2 recessive, close to 0 dominant disease nonsense variants per healthy genome.

	Alu	Gene	Ancestral State
Gene	Alu	Gene	

The Genome Remodeling Process

The Genome Kemodeling Process

RDV & Mobile Elements

<u>Retroduplication</u> variation (RDV)

Frequency of novel retroduplications by populations.

Abyzov A et al. Genome Res. 2013;23:2042-2052

Can Alkan, Bradley P. Coe & Evan E. Eichler Nature Reviews Genetics 12, 363-376 (May 2011)

1000G Summary

1000G SV (Pilot, **Phase I & III**)

Many different callers compared & used

- including SRiC & CNVnator but also VariationHunter, Cortex, NovelSeq, PEMer, BreakDancer, Mosaik, Pindel, GenomeSTRiP, mrFast....
- Merging
- Genotyping (GenomeSTRiP)
- Breakpoint assembly (AGE & Tigra_SV)
- Mechanism Classification

Summary Stats of 1000GP SV Phase3

- 68,818 SVs
- 2,504 unrelated individuals
- 26 populaSons
- 37,250 SVs with resolved breakpoints

[2] 1000GP Phase3 SV paper. Submided to Nature, 2015.

Phase 3: Median Autosomal Variant Sites Per Genome

	AF	R	AN	/IR	E/	45	EL	JR	S	AS .
amples 661		347		504		503		489		
Mean Coverage	ean Coverage 8.2		7.6		7.7		7.4		8.0	
	Var. Sites	Singletons	Var. Sites	Singletons	Var. Sites	Singletons	Var. Sites	Singletons	Var. Sites	Singletons
SNPs	4.31M	14.5k	3.64M	12.0k	3.55M	14.8k	3.53M	11.4k	3.60M	14.4k
Indels	625k	-	557k	-	546k	-	546k	-	556k	-
Large Deletions	1.1k	5	949	5	940	7	939	5	947	5
CNVs	170	1	153	1	158	1	157	1	165	1
MEI (Alu)	1.03k	0	845	0	899	1	919	0	889	0
MEI (LINE1)	138	0	118	0	130	0	123	0	123	0
MEI (SVA)	52	0	44	0	56	0	53	0	44	0
MEI (MT)	5	0	5	0	4	0	4	0	4	0
Inversions	12	0	9	0	10	0	9	0	11	0
NonSynon	12.2k	139	10.4k	121	10.2k	144	10.2k	116	10.3k	144
Synon	13.8k	78	11.4k	67	11.2k	79	11.2k	59	11.4k	78
Intron	2.06M	7.33k	1.72M	6.12k	1.68M	7.39k	1.68M	5.68k	1.72M	7.20k
UTR	37.2k	168	30.8k	136	30.0k	169	30.0k	129	30.7k	168
Promoter	102k	430	84.3k	332	81.6k	425	82.2k	336	84.0k	430
Insulator	70.9k	248	59.0k	199	57.7k	252	57.7k	189	59.1k	243
Enhancer	354k	1.32k	295k	1.05k	289k	1.34k	288k	1.02k	295k	1.31k
TFBS	927	4	759	3	748	4	749	3	765	3
Filtered LoF	182	4	152	3	153	4	149	3	151	3
HGMD-DM	20	0	18	0	16	1	18	2	16	0
GWAS	2.00k	0	2.07k	0	1.99k	0	2.08k	0	2.06k	0
ClinVar	28	0	30	1	24	0	29	1	27	1

A Typical Genome

- A typical genome differs from the reference genome at <u>4.09 –</u> <u>5.02 million sites</u>.
- The typical genome contains <u>2,100 2,500 SVs</u>, covering <u>~20</u> <u>million bases</u>.
- A typical genome contains <u>149 182 sites</u> with protein truncating variants, <u>10 – 12 thousand sites</u> with peptide sequence altering variants, and <u>459 – 565 thousand variant</u> <u>sites</u> overlapping regulatory regions.

Structural Variations (SVs)

• SVs make up the majority of varying nucleotides among humans.

- More base pairs are altered as a result of SVs, than of single-nucleotide variations.
 - On the haploid reference assembly, a medium of 8.9 Mbp are affected by SVs, while 3.6 Mbp affected by SNPs.

[1] Weischenfeldt J, et al. Nat Rev Genet, 2013.

[2] 1000GP Phase3 SV paper. Submided to Nature, 2015.

Distribution of Different SVs in Normal Human Populations

Total ~70K SVs from over 2,500 normal individuals (the 1000 Genomes Project)

Distribution of Different SVs Stratified by Allele Frequency

Different Approaches Work Differently on Different Events

Deletions

46 = Lectures.GersteinLab.org

[Zhang et al. ('11) BMC Genomics]

Measure of Overlap between SVs and Genomic Elements

Partial overlap statistic:

Count the number of genomic elements that have at least 1 bp overlap with SVs.

Permutation Tests

- Permutation scheme
 - Randomly shuffle SV locations while maintaining the local structure
 - Same number of SVs, same length distribution
 - Shuffled SVs still locate on the same chromosome
 - Hg19 gap removed
 - Log2 fold change and empirical p-values
- Datasets
 - 8 types of SVs from the 1000 Genomes Project
 - 20 types of genomic elements from GENCODE, ENCODE, and other literature

DEL overlap with genomic elements (partial overlap)

DEL overlap with genomic elements (partial overlap)

Genomic elements

Exact Breakpoints & **Nechanism** <u>Classification</u>

4 mechanisms for SV formation

SENSE VNTR SINE-R POLY(A) TSD

NAHR (Non-allelic homologous recombination)

Flanking repeat (e.g. Alu, LINE...)

NHEJ (NHR) (Non-homologousend-joining)

No (flanking) repeats. In some cases <4bp microhomologies

L1, SVA, Alus

VNTR

(Variable Number Tandem Repeats)

Number of repeats varies between different people

SV Mechanism Classification

[Lam et al., ('10) Nat. Biotech.]

SV Ancestral State Analysis

Breakpoint characterization in 1000G

- Breakseq #1 w/ ~2000 breakpoints [Lam et al. Nat. Biotech. ('10)]
- Pilot
- Phase 1 "Integrated" & Phase 1 refined

Exact match Number in parentheses: >50% reciprocal match

[Abyzov et al. ('15) Nature Comm.]

[1000 Genomes Consortium, Nature (2012)] [Lam et al., ('10) *Nat. Biotech.*]

Mechanism	<500 bps	500-1000 bps	1-10 kbps	>10 kbps
NAHR	9 (2.6%)	294 (23.3%)	1420 (22.6%)	255 (24.7%)
NHR	284 (82.8%)	889 (70.4%)	4642 (73.7%)	748 (72.4%)
MEI	47 (13.7%)	67 (5.3%)	124 (2.0%)	0 (0%)
VNTR	2 (0.6%)	7 (0.6%)	64 (1.0%)	23 (2.2%)
Undefined	1 (0.3%)	6 (0.5%)	45 (0.7%)	7 (0.7%)
Total	343 (100%)	1263 (100%)	6295 (100%)	1033 (100%)

STEI

BreakSeq Annotation

Remarks: There are 79 STEI_NAH events, i.e. 79 events were changed from NAHR to STEI based on our new criteria in the enhanced BreakSeq. Extended annotations from BreakSeq such as NAHR_EXT, STEI_NAH, etc are grouped into their corresponding mechanisms in the above.

Hugo Lam

References

Depth-of-coverage

CNVnator (Abyzov et al., 2011)

Paired-end mapping

PEMer (Korbel et al., 2009): For discovery of CNVs and inversions; could also be implemented for translocations

Breakdancer (Chen et al., 2009): For discovery of CNVs, inversions, and translocations

GenomeSTRiP (Broad institute): whole-genome, integrating read depth, paired end; population level feature

Programs for analysis of longer reads that directly sequence breakpoints CREST (Wang et. al., 2011): Detects small and large structural variants by direct sequencing of breakpoints. SRiC (Zhang et al., 2011): Similar to CREST Algorithm for strobe reads (Ritz et al., 2010)