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MOLECULAR STRUCTURE OF
NUCLEIC ACIDS
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This
structure has novel features which are of considerable
biological interest.

A istructure! for nucleic acid has already been
proposéd by Pauling and Corey'. They kindly made
their manuscript available to us in advance of
publication. Their model consists of three inter-
twined chains, with the phosphates near the fibre
axis, and_the hases on the outside. In our opinion,
this lstructure | is unsatisfactory for two reasons :
(1) We believe that the material which gives the
X-ray diagrams is the salt, not the free acid. Without
the acidic hydrogen _atoms it is not clear what forces

would hold the jstructure jtogether, especially as the
negatively charged phosphates near the axis will
repel each other. (2) Some of the van der Waals
distances appear to be_too_small.

Another three-chain] structure] has also been sug-
gested by Fraser (in the press). In his model the
phosphates are on the outside and the bases on the
inside, linked together by hydrogen bonds. This
structure !las described is rather ill-defined, and for
"""""" this reason we shall not comment
on it.

We wish to put forward a

radically different {structure

suggest for

structurel for
oxviiboge _racleic
acid. This !structure
helical chains each coiled roun

T 5
have made the usual chemical
assumptions, namely, that each
chain consists of phosphate di-
ester groups joining B-pD-deoxy-
ribofuranose residues with 3’,5°
linkages. The two chains (but

not their bases) are related by a
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The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution.
Here we report the results of an intemational collaboration to produce and make freely available a draft sequence of the human
genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

The rediscovery of Mendel’s laws of heredity in the opening weeks of
the 20th century'™ sparked a scientific quest to understand the
nature and content of genetic information that has propelled
biology for the last hundred years. The scientific progress made
falls naturally into four main phases, corresponding roughly to the
four quarters of the century. The first established the cellular basis of
heredity: the chromosomes. The second defined the molecular basis
of heredfty:the DNA double helix. J he third unlocked the informa-
tional basis of heredity, with the discovery of the biological mechan-
ism by which cells read the information contained in genes and with
the invention of the recombinant DNA technologies of cloning and
sequencing by which scientists can do the same.

The last quarter of a century has been marked by a relentless drive
to decipher first genes and then entire genomes, spawning the field
of genomics. The fruits of this work already include the genome
sequences of 599 viruses and viroids, 205 naturally occurring
plasmids, 185 organelles, 31 eubacteria, seven archaea, one
fungus, two animals and one plant.

Here we report the results of a collaboration involving 20 groups
from the United States, the United Kingdom, Japan, France,
Germany and China to produce a draft sequence of the human
genome. The draft genome sequence was generated from a physical
map covering more than 96% of the euchromatic part of the human
genome and, together with additional sequence in public databases,
it covers about 94% of the human genome. The sequence was
produced over a relatively short period, with coverage rising from
about 10% to more than 90% over roughly fifteen months. The
sequence data have been made available without restriction and
updated daily throughout the project. The task ahead is to produce a
finished sequence, by closing all gaps and resolving all ambiguities.
Already about one billion bases are in final form and the task of
bringing the vast majority of the sequence to this standard is now
straightforward and should proceed rapidly.

coordinate regulation of the genes in the clusters.

® There appear to be about 30,000—-40,000 protein-coding genes in
the human genome—only about twice as many as in worm or fly.
However, the genes are more complex, with more alternative
splicing generating a larger number of protein products.

® The full set of proteins (the ‘proteome’) encoded by the human
genome is more complex than those of invertebrates. This is due in
part to the presence of vertebrate-specific protein domains and
motifs (an estimated 7% of the total), but more to the fact that
vertebrates appear to have arranged pre-existing components into a
richer collection of domain architectures.

® Hundreds of human genes appear likely to have resulted from
horizontal transfer from bacteria at some point in the vertebrate
lineage. Dozens of genes appear to have been derived from trans-
posable elements.

@ Although about half of the human genome derives from trans-
posable elements, there has been a marked decline in the overall
activity of such elements in the hominid lineage. DNA transposons
appear to have become completely inactive and long-terminal
repeat (LTR) retroposons may also have done so.

@ The pericentromeric and subtelomeric regions of chromosomes
are filled with large recent segmental duplications of sequence from
elsewhere in the genome. Segmental duplication is much more
frequent in humans than in yeast, fly or worm.

@ Analysis of the organization of Alu elements explains the long-
standing mystery of their surprising genomic distribution, and
suggests that there may be strong selection in favour of preferential
retention of Alu elements in GC-rich regions and that these ‘selfish’
elements may benefit their human hosts.

@ The mutation rate is about twice as high in male as in female
meiosis, showing that most mutation occurs in males.

@ Cytogenetic analysis of the sequenced clones confirms sugges-
tions that large GC-poor regions are strongly correlated with ‘dark
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Non-coding Annotations: Overview

Sequence features, incl. Conservation

Large-scale sequence
similarity comparison

Functional Genomics

ChlP-seq (Epigenome & seq. specific TF)
and ncRNA & un-annotated transcription
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Signal processing of raw
experimental data:

 Removing artefacts
* Normalization
* Window smoothing
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data into active regions:
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- Being a happy cog in a 500+ person Big-science project

— Chip-Chip, Chip-Seq, Thresholding v Control,
Segmentation, Multi-scale site calling

Many unconstrained regulatory sites
But finding small number of sites particularly sensitive to mutations

Creating it from the linear annotation &
connecting it to network science & hubs

More connectivity, more constraint

- Tools (eg FunSeq) for systematically weighting non-coding
features

— Culture Clash: Open Data in Genomics v Patient Privacy
- Genomics Legacy: the discipline as a exemplar for Data Science







ChiIP-seq vs ChIP-chip: Much cleaner
sighal from sequencing than arrays
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[Rozowsky et al. Nat. Biotech ('09)]
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Summarizing the Signal:
"Traditional” ChipSeq Peak Calling

Generate & threshold the ChiPp

signal profile to identify
candidate target regions
— Simulation (PeakSeq)

— Local window based Poisson (MACS) Threshold
— Fold change statistics (SPP) L R 0 TN P e T B Y B

Potential Targets (O RINN (I A | T e I

Normalized Control

Score against the control

Significantly Enriched targets Nl L



Multi-track analysis: Segmentation
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Multiscale Decomposition
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A Puzzle from the Pilot: Why so much biochemical
activity w/o Sequence Constraints

Constrained
HO—0
A

sequence

Experimental
annotation

"At the outset of the ENCODE Project, many believed that the
broad collection of experimental data would nicely dovetail with the
detailed evolutionary information derived from comparing multiple
mammalian sequences to provide a neat ‘dictionary’ of conserved
genomic elements, each with a growing annotation about their
biochemical function(s). In one sense, this was achieved; the
majority of constrained bases in the ENCODE regions are now
associated with at least some experimentally-derived information

about function. However, we have also
encountered a remarkable excess of
unconstrained experimentally-identified
functional elements, and these cannot
be dismissed for technical reasons.
This is perhaps the biggest surprise of

the pilot phase of the ENCODE Project,

and suggests that we take a more
‘neutral’ view of many of the functions

conferred by the genome. "
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[ENCODE Consortium, Nature 447, 2007]
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Many Regulatory Sites still unconstrained in
Model Organism Analysis (Worm)
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Non-constrained Constrained
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[Science 330:6012]
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Finding "Conserved” Sites in the Human Population:

Negative selection in non-coding elements based on
Production ENCODE & 1000G Phase 1

Broad Categories
Coding H

Genomic Avg

Enhancer

« Broad categories
of regulatory
regions under

(Non-coding RNA) ncRNA

(DNase |
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sites) _ ]
{ TFss (TFSS: Sequence- * Related to:
specific TFs)
(Transcription
factor binding 17 BS < IEEHEE ENCODE, Nature, 2012
sites) Ward & Kellis, Science, 2012
: Mu et al, NAR, 2011
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Fraction of rare SNPs
Depletion of Common Variants
in the Human Population [Khurana et al., Science (‘13)]



Differential
selective
constraints
among specific
Specific Categories su b-CategorieS
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Sub-categorization possible
because of better statistics from
1000G phase 1v pilot [Khurana et al., Science (‘13)]
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~0.4% genomic coverage (™~ top 25)

~0.02% genomic coverage (top 5)

0.56 06 0.64 0.68

0.72
Fraction of rare SNPs
A Broad Categories B Specific Categories
GenomicAvg 27M SNPs
! TF Families (motifs)
Coding | 0.27M ! H ! .
0 Coding ' H
. > : HMG
Missense | 0.15M . B Forkhead =
' bz/P" -
Synonymous | 0.12M : — ST S
uTr| 0.4M . L MADs-box”
: - NR®
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Enhancer 1Y p53° -
; iP1r7Ic”
DHS | 4.8M h v’ I
- evs’ - |
TFSS i+ - |
o a2 RS —
<  General whTH - .
= , cer-nrY I ——
Chromatin T T f T ]
050 0.55 0.60 0.65 0.70
T T T T 1
0.56 0.6 0.64 0.68 0.72

Fraction of rare SNPs

Defining
Sensitive
non-coding
Regions

Start 677 high-

resolution non-coding
categories; Rank & find
those under strongest
selection

Sub-categorization possible
because of better statistics from
1000G phase 1 v pilot

[Khurana et al., Science (‘13)]






Relating Non-coding Annotation
to Protein-coding Genes via Networks

Regulatory elements

— — — ®
v

Assigning proximal sites (< 1Kb) to target genes

(ry, (¥,

Proximal l AN
Edg):aI R e
~500K Prox. Edges

\

Assigning distal sites (10Kb-1Mb) to targets

—
~26K
Distal ‘ ” = / i,

Cell lines

Qoo"i P —

Distal signals Expression levels
Methylation H3K27ac Gene 1 Gene2 Gene3
awzsrsl N
H1-hESC |
veLa-ss [
Hep-G2 :
K562 i
I

~700K Edges /. 4

Connecting Distal Elements
via Activity Correlations.

weak | Other strategies to create linkage
incl. eQTL and Hi-C. Much in
recent Epigenomics Roadmap.




Power-law distribution Hubs Under
Constraint:
- P(k)~k" A Finding from the
Network Biology

log P(k) A N
7

> :
S Hub Community
c >
S
o _* High likelihood of Not under positive
() o e . O .
= positive selection selection
0 Lower likelihood of No data about
o ® positive selection O positive selection
—
log k

log(Degree)

* More Connectivity, More Constraint: Genes & proteins that
have a more central position in the network tend to evolve
more slowly and are more likely to be essential.

 This phenomenon is observed in %3
many organisms & different kinds of networks > ‘ :
- yeast PPI - Fraser et al ('02) Science, ‘
('03) BMC Evo. Bio. SR
— Ecoli PPI - Butland et al ('04) Nature
- Worm/fly PPI - Hahn et al ('05) MBE | e )
- miRNA net - Cheng et al ('09) BMC Genomics 7
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Unified network
degree (log scale)

Regulatory Hubs
are more Essential © R

° o
_?_ g, -
S : 3 e
| i I
li) N : : > » .: : A .- P
| ot g
o ] : . Ml v. )
[te) - .- ' . o -
o 7 l . AR ’ y
LoF- . ol BRI g , ' g ’
o
Proximal Regulatory Network . SR i . _' "
. .
3 ¢ @ ©
r T LoF-tolerant genes  Essential genes
: ] - Size of nodes scaled by

toll-:rtz-nt Fesentil [Khurana et al., PLOS Comp. Bio. '13] total degree






Where is Waldo?
(Finding the key mutations in “4M Germline variants &

~5K Somatic Variants in a Tumor Sample)
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Applying Linear & Network Annotation to Prioritize
Somatic Mutations as Possible Drivers

Cancer genome ©® SNV & Indel
variants ' T? PY e TT ':' FunSeq
| \ [ [ O ] |
1000 | | [ [ ] || |
Genomes ----% L A LA LA %---- 1000 Genomes variants
Screen RS Other Tools
| | [ [ ] |
' : } : : } { } : Non-coding annotation fO r
i D o T o, D) o € - non-coding
prioritization:

Degree of negative selection

2 HaploReg,
VEP,

Motif disruptive score C A D D

Sensitive

breaking | | |
| | | e
[ |
| Degree of network centrality
Enbhancer/ | | . > o
Promoter et . _f: sfe et

-
--------

e e e
‘
'
|
[ J

[Khurana et al., Science (‘13)] 31
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Flowchart for 1 Prostate Cancer Genome

(from Berger et al. '11)

Prostate
cancer

5 (' Found in 1000 Genomes ?
1000 Genomes

Screen

1829 somatic SNVs

Annotated ?

Functional

annotation X
400
Regulatory
N Y

In sensitive region ?
N Y
.

a. Sensitive 379

N
Y —>| 1306

Nonsynonymous ?

Gene under
strong selection ?

Y\
b. Disruptive

1
v :'
Breaks TF motif ? ultra-sensitive region ?.
N \:( (=]
LoF ?
FIEE | =B Svacs
? =) :

e
]

(Targelgeneknown ) ( Target gene known ? )

Nei'\\r’l.ork q] l:l

(Target gene isfa hub ’.7)

(Targel gene is a hub ?)

N I

(Rec pirrent ?)

(Recurrent 'J)

=z
=<

Candidate drivers

Start: 1829
Somatic SNVs

v

( Found in 1000 Genomes ?)

be driver

Y ikely
N ) 123 Unlikely to

In
Gltra-sensitive region D
e T

( Target gene known ? )
N Y

g

(Target gene is a hub ?)

[Khurana et al., Science (‘“13)]

End: 1 Somatic
SNV in ultra-
sensitive region &
hub. Potential

non-coding Driver







- Being a happy cog in a 500+ person Big-science project

— Chip-Chip, Chip-Seq, Thresholding v Control,
Segmentation, Multi-scale site calling

Many unconstrained regulatory sites
But finding small number of sites particularly sensitive to mutations

Creating it from the linear annotation &
connecting it to network science & hubs

More connectivity, more constraint

- Tools (eg FunSeq) for systematically weighting non-coding
features

— Culture Clash: Open Data in Genomics v Patient Privacy
- Genomics Legacy: the discipline as a exemplar for Data Science




Culture Clash: Open Data in Genomics v Patient Privacy

 Open Data, Open Source, &c
is the culture of Genomics
(“its meta-DNA”)

- Origins in worm project

« Strong Reasons for Genomic
Privacy in the Future

- Personal Genomic info.
essentially meaningless
currently but will it be in 20 yrs?
90 yrs?

- Genomic sequence very
revealing about one’s children

- Once put on the web it can’t be
taken back

[D Greenbaum & M Gerstein ('08). Am J. Bioethics; D Greenbaum & M Gerstein, Hartford Courant, 10 Jul. '08 ; SF Chronicle, 2 Nov. '08;
Greenbaum et al. PLOS CB (‘11) ; Greenbaum & Gerstein ('13), The Scientist; Photo from NY Times]
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eI Harvard

Legacy of Human ¥ Rusiness [Oct, 12 issuel
Genome Annotation? D e e sexiest Job of the 21st Century
Is it an early exemplar

for Data Science

Artwork: Tamar Cohen, Andrew J Buboltz, 2011, silk screen on a page from a higr

When Jonathan Goldman arrived for work in June 2006 at LinkedIn, the business ne
up. The company had just under 8 million accounts, and the number was growing qt
friends and colleagues to join. But users weren’t seeking out connections with the pe
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Info about content in this slide pack

 General PERMISSIONS

- This Presentation is copyright Mark Gerstein,
Yale University, 2015.

- Please read permissions statement at

http://www.gersteinlab.org/misc/permissions.html .
- Feel free to use slides & images in the talk with PROPER acknowledgement
(via citation to relevant papers or link to gersteinlab.org).
- Paper references in the talk were mostly from Papers.GersteinLab.org.

» For SegUniverse slide, please contact Heidi Sofia, NHGRI

« PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and
clipped images in this presentation see http://streams.gerstein.info .
- In particular, many of the images have particular EXIF tags, such as kwpotppt, that can be
easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt
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MUSIC makes music

-get_multiscale_music: Generates a .wav file
using the aggregate multiscale decomposition

Listen to K562 H3K36me3 chromosome 1:
http://archive.gersteinlab.org/proj/MUSIC/

music/H3K36me3.mp3

— Telomeres are vocal, centromeres (46:00-53:00) are
silent

Listen K562 H3K4me3 chromosome 1:
http://archive.gersteinlab.org/proj/MUSIC/

music/H3K4me3.mp3

— More “clicky” than H3K36me3 with more punctate
enriched regions

38



Multiscale Analysis, Minima/Maxima based
Coarse Segmentation
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Sources
of Annotation:
Comparative

&
Functional

| o |* 

| ol | 14

. -:I:I:MQ
I [ l :

Y | N - - .y .

MDL-1
ELT3

EGL-27
BLMP-1

CEH-30 A . . aa A . A .
MEP-1

-

i
i
i

LIN-13
PHA-4

HLHA
HLHA Input
EGL-27 Input

g

N2 Input
H3K2ac
H3K4me

Signal processing of raw
experimental data:

» Removing artefacts
» Normalization
» Window smoothing

v

Polll ... - J—

SRR W VY W SRRy W S
Refseq() | yuum 1

:::::

Segmentation of processed
data into active regions:

» Binding sites

» Transcriptionally active

regions
v

Group active regions into
larger annotation blocks

Large-scale sequence
similarity comparison

v

Identify large blocks of
repeated and deleted
sequence:

» Within the human
reference genome

» Within the human
population

« Between closely related
mammalian genomes

v

Identify smaller-scale
repeated blocks using
statistical models

QEEm & mm

e




Multinet — the ultimate hairball!

Genes participate in many
networks and no single
network captures the
global picture of gene
interactions

Combine regulatory
interactions with other
networks : physical
protein-protein, signaling,
metabolic,
phosphorylation and
genetic to create a unified
network (Multinet)

Nodes: ~15,000 genes
Edges: ~110,000 interactions

Edges shown in gray

[Khurana et al., PLOS Comp. Bio. '13]
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Centrality in Gene Networks
Weakly Associated with
Essentiality

Proximal Regulatory Network

25
|

-
3
e |
+ o Wilcoxon pvalue=1.29e-2
zZ 3
PRSEEE
[¢] S E—
% ‘
U — 1
© o | )
. S |
+< | |
O | |
— 0 |
o
o ] - -
o
T T
LoF- Essential

tolerant

Khurana et al., PLoS Comp. Bio., 2013

PPl degree (log scale)

Num of interfaces

1.0

10 15 20 25 30 35 40

15 2.0 25
I I |

0.0 0.5
| I

LoF-
tolerant

Essential

Higher
Centrality
In PPI

More
interaction
interfaces
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M USIC.gersteinIab.org
Algorithm

Mapability Corrected
Signal

Mapability Correction

Median filter with
smoothing window

Identify local minima
Y Local minima

Identify trimmed enriched
regions

N 0 |
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mmm Scale Specific Enriched Regions

Multi-scale Peak Calling
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e FunSeq2 - A flexible framework to prioritize regulatory mutations from cancer genome sequencing

Overview

This tool is specialized to prioritize somatic variants from cancer
whole genome sequencing. It contains two components : 1) building
data context from various resources; 2) variants prioritization. We
provided downloadable scripts for users to customize the data
context (found under 'Downloads'). The variants prioritization step is
downloadable, and also implemented as web server (Right Panel),
with pre-processed data context.

Instructions

<« Input File - BED or VCF formatted. Click "green" button to add
multiple files. With multiple files, the tool will do recurrent analysis.
(Note: for BED format, user can put variants from multiple genomes
in one file, see Sample input file .)

« Recurrence DB - User can choose particular cancer type from the
database. The DB will continue be updated with newly available
WGS data.

% Gene List - Option to analyze variants associated with particular
set of genes. Note: Please use Gene Symbols, one row per gene.
<« Differential Gene Expression Analysis - Option to detect
differentially expressed genes in RNA-Seq data. Two files needed:
expression file & class label file. Please refer to Expression input files
for instructions to prepare those files.

< Note: In addition to on-site calculation, we also provide
scores for all possible noncoding SNVs of GRCh37/hg19
under 'Downloads' (without annotation and recurrence
analysis).

Input File: (only for hg19 SNVs)
| Choose File | No file chosen
BED or VCF files as input. Sample input file

Output Format:
bed §

MAF:
0

Minor allele frequency threshold to filter polymorphisms from
1KG (value 0~1)

Cancer Type from Recurrence DB: Summary table

A

All Cancer Types v

Add a gene list (Optional)

Add differential gene expression analysis (Optional)

Upload

F un Seq .gersteinlab.org

[Fu et al., GenomeBiology ('14)]

~5K

Site integrates
user variants

with large-scale
context

Data Context
~5 Tb (rebuilt slowly)

Weighted scoring scheme

Highlighting variants
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of N.oﬂ-chlng “Dark. Matter” oifiie Genbme

Only ~1 % of the Human Genome ‘ es. | o'rtance

Non-coding regions contain the control elements
for coding regions.

Some non-coding regions are functional
& are pervasively transcribed.

“Molecular Fossils” in the'non-coding genome
represent a historical record of the genome

Mostdisease-associated mutations (e.g. GWAS hits)
are in non-coding regions.

o L
-
'Q"
.

.

iig@onal lensing by dark matter in Abell 1689 — HST (NASA, ESA)]




NCODE Consortium Meetih 2013 -- Stanford University Medical Center



SNPs which break TF motifs are under
particularly strong selection

A Broad Categories B Specific Categories C SNPs Conserving vs. motifs
GenomicAvg 27M SNPs _
| TF Families (motifs) Forkhead
Coding | 0.27M ! H ' . | "I"
> : Coding . H l I T T T I |
: HMG 0.0 0.2 0.4 0.6
Missense | 0.15M : B Forkhead
Synonymous | 0.12M : —
' Forkhead motif Motif breaking SNP
UTR| 0.4M ' H MADs-box 20 T chrt: 98,100,579
H domain® '
Enhancer 1Y omeodomaln 1.0 H
]
0.0
DHS | 4.8M :" 5 10 15
TFSS
%)
E General A AP2 ‘
cer-NFy’ I ——
Chromatin T T f T ] | '+‘
050 0.55 0.60 0.65 0.70 I T T T T T ]
0.0 0.2 0.4 0.6
AP-2 motif Motif breaking SNP
T chr14: 99,849,316
T T T T 1 2.0
0.56 0.6 0.64 0.68 0.72
. 1.0
Fraction of rare SNPs
0.0-

[Khurana et al., Science (‘13)]
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Fraction of experimental annotation

Biochemically
Active Regions
Don't all Appear

to be Under
Constraint

Bases
o 0.7
o * Integrating &
g 7 averaging results
‘s 0.1 == = = — -
5 == T = [=l=1m - over larger and
g 071 regtons larger sets
S o5 .
T T I T||T « Comparison of
o1 {2 B B g g | | = integrated
quantities
°c 2 2 ¥ ¥ © 6 o« F &
S 3 =
RNA transcription Open DNA/protein
chromatin

[ENCODE Consortium, Nature 447, 2007]
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